MATHEMATICS ENRICHMENT CLUB. Solution Sheet 4, May 19, 2015 ${ }^{1}$

1. First write $2016=2^{5} 3^{2} 7$, then divide both sides by 2^{b} we get

$$
\begin{align*}
2^{a-b}-1 & =2^{5-b} 3^{2} 7 \\
2^{a-b} & =2^{5-b} 3^{2} 7+1 . \tag{1}
\end{align*}
$$

Since $2^{a}-2^{b}=2016>0, a>b$, which implies the LHS of equation (1) is an even number. For the RHS of (11) to be even, we must have $b=5$. Substituting $b=5$ into (1), then $2^{a-5}=64$, solving to obtain $a=11$.
2. Let O be the midpoint of $N M$, extend the line $A B$ so that it intercepts $K N$ at the point P; see below. Since $N M$ and $P L$ are parallel and O is the mid point of $N M, A$ is the midpoint of $P L$ (this is a special case of the intercept theorem http: //en.wikipedia.org/wiki/Intercept_theorem). Therefore the triangles $P N A$ and $A N L$ are congruent to each other, hence $\angle P N A=\angle A N L$.

3. We can write n as $n=3^{a} 5^{b} 7^{c} \times N$, where the number N has no factors of 3,5 or 7 . Then $\frac{1}{3} n=3^{a-1} 5^{b} 7^{c} \times N, \frac{1}{5} n=3^{a} 5^{b-1} 7^{c} \times N$ and $\frac{1}{7} n=3^{a} 5^{b} 7^{c-1} \times N$. Because we are looking minimal N, we may as well set $N=1$. So for $\frac{1}{3} n$ to be a perfect cube, $\frac{1}{5} n$ to be a perfect fifth power and $\frac{1}{7}$ to be a perfect seventh power, we must have $a-1$ a multiple of 3 and a a multiplied of 5,7 ; the smallest such a is 70 . To find n, repeat this argument to obtain b and c.

[^0]4. We have
$$
k^{3}-1=(k-1)\left(k^{2}+k+1\right)=(k-1)(k(k+1)+1)
$$
and
$$
k^{3}+1=(k+1)\left(k^{2}-k+1\right)=(k+1)(k(k-1)+1) .
$$

Therefore the numerator of the given product contains the factors $1,2,3, \ldots, n-1$ and the denominator contains $3,4,5, \ldots, n+1$. Most of these cancel and we are left with $2 / n(n+1)$. The numerator also contains factors $2 \times 3+1,3 \times 4+1, \ldots, n(n+1)+1$,and the denominator $1 \times 2+1,2 \times 3+1, \ldots,(n 1)+1$; again most cancel and there remains $(n(n+1)+1) /(1 \times 2+1)$. Combining all these results gives

$$
\frac{2^{3}-1}{2^{3}+1} \frac{3^{3}-1}{3^{3}+1} \frac{4^{3}-1}{4^{3}+1} \cdots \frac{n^{3}-1}{n^{3}+1}=\frac{2}{n(n+1)} \frac{n(n+1)+1}{1 \times 2+1}=\frac{2}{3} \frac{n^{2}+n+1}{n^{2}+n} .
$$

5. Let M_{1} and M_{2} be the two mathematicians. We can plot the arrival time of M_{1} and M_{2} on the $x-y$ plane, with x-axis representing the arrival time of M_{1}, and y-axis the arrival time of M_{2}; see figure 1. Each mathematician stays in the tea room for exactly m minutes, so we know that if M_{1} arrives first (say at $9 \mathrm{a} . \mathrm{m}$.) then M_{2} will run into M_{1} in the cafeteria if M_{2} 's arrival time is within m minutes of M_{1}; this is represented by the $m \times m$ square box in the bottom left of the plot. Over the break of 60 minutes, we get a shaded region as shown in figure 1 .

The probability that either mathematician arrives while the other is in the cafeteria is 40%, thus the non-shaded region is 60% of the total area of the big square. So we have

$$
\begin{aligned}
\frac{(60-m)^{2}}{60^{2}} & =0.6 \\
m & =60-12 \sqrt{15}
\end{aligned}
$$

therefore, $a+b+c=87$.

Figure 1: shaded area represents either mathematician arrives while the other is in the cafeteria
6. Let $f(n)$ be the number of ways we can choose these n integers. We can try to workout what $f(n+1)$ is; that is the number of ways to choose $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ such that each is 0,1 or 2 and their sum even.

Suppose we have n integers, $x_{1}, \ldots x_{n}$ from the list $0,1,2$ such that their sum is even. We know there is $f(n)$ ways to choose these n numbers, and we can either pick x_{n+1} to be 0 or 2 so that the sum of x_{1}, \ldots, x_{n+1} is even; the total number of ways we can pick these $n+1$ integers is $2 f(n)$.
On the other hand, if the initial n integers, $x_{1}, \ldots x_{n}$ from the list $0,1,2$ is odd, then there is $3^{n}-f(n)$ ways to choose these n numbers, and we can only pick $x_{n+1}=1$ so that the sum of $x_{1}, \ldots x_{n+1}$ is even; the total number of ways we can pick these $n+1$ integers is $3^{n}-f(n)$
Combining both cases, we have the recursive relation $f(n+1)=3^{n}+f(n)$. Since it is straightforward to workout $f(1)=2$, we can find $f(n)$.

Senior Questions

1. Given that a, b, and c are positive integers, solve
(a) If $a>b$, then dividing both sides by a !, we have

$$
b!=\frac{b!}{a!}+1
$$

the LHS of the above equation is an integer, while the RHS is not; we have a contradiction on the condition $a>b$. We can apply the same arguments to get $a \nless b$, so that $a=b$. The only solution is then $a=b=2$.
(b) Notice this equation is symmetric in a and b, so we can assume without loss of generality $a \geq b$. Dividing through by b, then

$$
\begin{equation*}
a!=\frac{a!}{b!}+1+\frac{2^{c}}{b!} . \tag{2}
\end{equation*}
$$

The LHS of equation (2) is an integer and $a!/ b!$ is an integer, therefore $2^{c} / b!$ must be an integer, this implies b is either 1 or 2 . Also, the RHS of (2) is the sum of 3 integers, so a ! must contain a factor of $3 ; a \geq 3$.
If $b=1$ then $a!=a!+1+2^{c}$, which implies $2^{c}+1=0$; there is no solution for c, so $b \neq 1$. Therefore $b=2$.
If $a>3$, then $a!/ 2$ is even, so $2^{c-1}=1$. But then we get $a!/ 2=2$, which has no solution for a.
Therefore, we conclude that $a=3$ and $b=2$, therefore $c=2$.
(c)
2. (a) The inequality holds for $n=3$. Assume $n!>(n-2)(1!+2!+\ldots(n-) 1!)$ and note that $2(n-2) \geq n-1$ for $n \geq 3$, therefore

$$
\begin{aligned}
(n+1)! & =(n-1) n!+2 n! \\
& >(n-1) n!+2(n-2)(1!+2!+\ldots(n-1)!) \\
& \geq(n-1)(1!+2!+\ldots+n!)
\end{aligned}
$$

so the inequality holds for all n by standard induction arguments.
(b) $(n+1)!<n(1!+2!+\ldots+n!)$ because

$$
\begin{aligned}
(n+1)! & =(n+1) n! \\
& =n n!+n! \\
& =n(n!+(n-1)!) \\
& <n(1!+2!+\ldots+n!)
\end{aligned}
$$

Therefore, combining with the result of (a),

$$
n<\frac{(n+1)!}{1!+2!+\ldots+n!}<n+1
$$

So $(n+1)$! divided by $1!+2!+\ldots n$! is a number that is strictly between n and $n+1 ; 1!+2!+\ldots n$! does not divide $(n+1)$!.

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

