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1. First write 2016 = 25327, then divide both sides by 2b we get

2a−b − 1 = 25−b327

2a−b = 25−b327 + 1. (1)

Since 2a − 2b = 2016 > 0, a > b, which implies the LHS of equation (1) is an even
number. For the RHS of (1) to be even, we must have b = 5. Substituting b = 5 into
(1), then 2a−5 = 64, solving to obtain a = 11.

2. Let O be the midpoint of NM , extend the line AB so that it intercepts KN at
the point P ; see below. Since NM and PL are parallel and O is the mid point of
NM , A is the midpoint of PL (this is a special case of the intercept theorem http:

//en.wikipedia.org/wiki/Intercept_theorem). Therefore the triangles PNA and
ANL are congruent to each other, hence ∠PNA = ∠ANL.
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3. We can write n as n = 3a5b7c × N , where the number N has no factors of 3, 5 or 7.
Then 1

3
n = 3a−15b7c ×N , 1

5
n = 3a5b−17c ×N and 1

7
n = 3a5b7c−1 ×N . Because we are

looking minimal N , we may as well set N = 1. So for 1
3
n to be a perfect cube, 1

5
n to

be a perfect fifth power and 1
7

to be a perfect seventh power, we must have a − 1 a
multiple of 3 and a a multiplied of 5, 7; the smallest such a is 70. To find n, repeat
this argument to obtain b and c.
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4. We have
k3 − 1 = (k − 1)(k2 + k + 1) = (k − 1)(k(k + 1) + 1)

and
k3 + 1 = (k + 1)(k2 − k + 1) = (k + 1)(k(k − 1) + 1).

Therefore the numerator of the given product contains the factors 1, 2, 3, . . . , n−1 and
the denominator contains 3, 4, 5, . . . , n + 1. Most of these cancel and we are left with
2/n(n + 1). The numerator also contains factors 2× 3 + 1, 3× 4 + 1, . . . , n(n + 1) + 1
,and the denominator 1 × 2 + 1, 2 × 3 + 1, . . . , (n1) + 1; again most cancel and there
remains (n(n + 1) + 1)/(1× 2 + 1). Combining all these results gives

23 − 1

23 + 1

33 − 1

33 + 1

43 − 1

43 + 1
· · · n

3 − 1

n3 + 1
=

2

n(n + 1)

n(n + 1) + 1

1× 2 + 1
=

2

3

n2 + n + 1

n2 + n
.

5. Let M1 and M2 be the two mathematicians. We can plot the arrival time of M1 and
M2 on the x-y plane, with x-axis representing the arrival time of M1, and y-axis the
arrival time of M2; see figure 1. Each mathematician stays in the tea room for exactly
m minutes, so we know that if M1 arrives first (say at 9 a.m.) then M2 will run into
M1 in the cafeteria if M2’s arrival time is within m minutes of M1; this is represented
by the m×m square box in the bottom left of the plot. Over the break of 60 minutes,
we get a shaded region as shown in figure 1.

The probability that either mathematician arrives while the other is in the cafeteria is
40%, thus the non-shaded region is 60% of the total area of the big square. So we have

(60−m)2

602
= 0.6

m = 60− 12
√

15,

therefore, a + b + c = 87.
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Figure 1: shaded area represents either mathematician arrives while the other is in the
cafeteria

6. Let f(n) be the number of ways we can choose these n integers. We can try to workout
what f(n + 1) is; that is the number of ways to choose x1, x2, . . . , xn, xn+1 such that
each is 0, 1 or 2 and their sum even.
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Suppose we have n integers, x1, . . . xn from the list 0, 1, 2 such that their sum is even.
We know there is f(n) ways to choose these n numbers, and we can either pick xn+1

to be 0 or 2 so that the sum of x1, . . . , xn+1 is even; the total number of ways we can
pick these n + 1 integers is 2f(n).

On the other hand, if the initial n integers, x1, . . . xn from the list 0, 1, 2 is odd, then
there is 3n − f(n) ways to choose these n numbers, and we can only pick xn+1 = 1 so
that the sum of x1, . . . xn+1 is even; the total number of ways we can pick these n + 1
integers is 3n − f(n)

Combining both cases, we have the recursive relation f(n+ 1) = 3n + f(n). Since it is
straightforward to workout f(1) = 2, we can find f(n).

Senior Questions

1. Given that a, b, and c are positive integers, solve

(a) If a > b, then dividing both sides by a!, we have

b! =
b!

a!
+ 1,

the LHS of the above equation is an integer, while the RHS is not; we have a
contradiction on the condition a > b. We can apply the same arguments to get
a ≮ b, so that a = b. The only solution is then a = b = 2.

(b) Notice this equation is symmetric in a and b, so we can assume without loss of
generality a ≥ b. Dividing through by b!, then

a! =
a!

b!
+ 1 +

2c

b!
. (2)

The LHS of equation (2) is an integer and a!/b! is an integer, therefore 2c/b! must
be an integer, this implies b is either 1 or 2. Also, the RHS of (2) is the sum of 3
integers, so a! must contain a factor of 3; a ≥ 3.

If b = 1 then a! = a! + 1 + 2c, which implies 2c + 1 = 0; there is no solution for c,
so b 6= 1. Therefore b = 2.

If a > 3, then a!/2 is even, so 2c−1 = 1. But then we get a!/2 = 2, which has no
solution for a.

Therefore, we conclude that a = 3 and b = 2, therefore c = 2.

(c)

2. (a) The inequality holds for n = 3. Assume n! > (n − 2)(1! + 2! + . . . (n−)1!) and
note that 2(n− 2) ≥ n− 1 for n ≥ 3, therefore

(n + 1)! = (n− 1)n! + 2n!

> (n− 1)n! + 2(n− 2)(1! + 2! + . . . (n− 1)!)

≥ (n− 1)(1! + 2! + . . . + n!),

so the inequality holds for all n by standard induction arguments.
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(b) (n + 1)! < n(1! + 2! + . . . + n!) because

(n + 1)! = (n + 1)n!

= nn! + n!

= n(n! + (n− 1)!)

< n(1! + 2! + . . . + n!).

Therefore, combining with the result of (a),

n <
(n + 1)!

1! + 2! + . . . + n!
< n + 1.

So (n + 1)! divided by 1! + 2! + . . . n! is a number that is strictly between n and
n + 1; 1! + 2! + . . . n! does not divide (n + 1)!.
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