MATHEMATICS ENRICHMENT CLUB. Problem Sheet 1, April 30, 2016

1. What is the last digit of $2^{4^{68}}$.
2. Shaun has to climb up 10 steps. He can either climb 1 step or 2 steps at each time. How many possible ways are there for Shaun to climb the stairs?
3. Consider the following logical statements:
(a) If this statement is true, then the other statement is false.
(b) If this statement is true, then the other statement is false.

How many of them is/are true?
4. Let $S=\left|\sqrt{x^{2}+4 x+5}-\sqrt{x^{2}+2 x+5}\right|$, for some real number x. Find the maximum value of S.
5. Each of given 100 numbers was increased by 1 . Then each number was increased by 1 once more. Given that the first time the sum of the squares of the numbers was not changed find how this sum was changed the second time.
6. A ball is projected from the bottom left corner of unit square $A B C D$ into its interior. We shall assume that the speed of the ball remains constant and it will continue bouncing off the edges until it arrives at a corner. For example, if the ball strikes $\frac{2}{3}$ of the way from D to C it will terminate at D.

Where must the ball strike on $D C$ to finish at A ?

Senior Questions

1. Given that p is prime, when is $4^{p}+p^{4}$ prime?
2. Park's paths go along sides and diagonals of the convex quadrilateral $A B C D$. Alex starts at A and hikes along $A B-B C-C D$. Ben hikes along $A C$; he leaves A simultaneously with Alex and arrives to C simultaneously with Alex. Chris hikes along $B D$; he leaves B at the same time as Alex passes B and arrives to D simultaneously with Alex. Assuming the speeds of the hikers are constant, can it happen that Ben and Chris arrive at point O of intersection of $A C$ and $B D$ at the same time?

3. Find all real-valued functions f defined for x between 0 and 1 which satisfy

$$
f(x y)=x f(x)+y f(y) .
$$

