MATHEMATICS ENRICHMENT CLUB. Problem Sheet 11, August 1, 2016

1. Let $29 x+30 y+31 z=366$, where x, y and z are non-negative integers. Find the least value of $x+y+z$.
2. A 3×3 grid of dots is shown below. What is the minimum number of squares required to separate each dot from the rest?
3. Find the largest integer n, such that $n^{3}+100$ is divisible by $n+10$.
4. How many five-digit natural numbers are divisible by 5 and the sum of its digits is also divisible by 5 ?
5. A circle is inscribed in a diamond of side length 1 , such that the neighboring corners of the diamond intersect the circle at 120°; as shown below. Find the area of the shaded region.

6. Consider the set of 2016 integers of the form $1!, 2!, 3!, \ldots, 2015!, 2016$!. Find the maximum number of integers from this set, such that their product forms a perfect square; For example, $1!\times 3!\times 4!=144=12^{2}$ is a perfect square.

Senior Questions

1. Positive integers $a<b<c$ are such that $b+a$ is a multiple of $b-a$ and $c+b$ is a multiple of $c-b$. If a is a 2011-digit number and b is a 2012-digit number, exactly how many digits does c have?
2.

$$
\sum_{k=1}^{\infty} \frac{k}{5^{k}}=
$$

3. In a convex quadrilateral $A B C D, A B=10, B C=14, C D=11$ and $D A=5$. Determine the angle between its diagonals.
