MATHEMATICS ENRICHMENT CLUB. Problem Sheet 12, August 8, 2016

1. Find the smallest possible integer n, such that $n+2 n+3 n+\ldots+99 n$ is a perfect square.
2. Let

$$
f(n)=\frac{1+2+3+\ldots+n}{n} .
$$

Evaluate $f(1)+f(2)+f(3)+\ldots+f(99)+f(100)$.
3. P is a point inside a convex polygon whose sides are all equal in length. Perpendiculars are constructed from P to the sides of the polygon. Show that the sum of the lengths of the perpendiculars is the same for all positions of P.
4. Let A, B and C be integers. Find the smallest possible prime p, such that

$$
\frac{x^{2}-p}{(x-2)(x-3)(x-5)}=\frac{A}{x-2}+\frac{B}{x-3}+\frac{C}{x-5} .
$$

5. Is is possible to make a 4×4 square lattice of size 4 cm by 4 cm by using
(a) 5 pieces of thread, each 8 cm long?
(b) 8 pieces of thread, each 5 cm long?

6. Find the last two digits of $\sqrt{4^{2016}+2 \times 6^{2016}+9^{2016}}$.

Senior Questions

1. Given 2 three digit numbers a and b and a four digit number c. If the sum of the digits of the number $a+b, b+c$ and $c+a$ are all equal to 3 , find the largest possible sum of the digits of the number $a+b+c$.
2. Are there integers a, b which satisfy

$$
5 a^{2}-7 b^{2}=9 ?
$$

Either find them or show that they do not exist.
3. Prove that there is no convex eight sided polygon with all angles equal and the sides distinct integers.

