MATHEMATICS ENRICHMENT CLUB.
Problem Sheet 12, August 8, 2016

1. Find the smallest possible integer \(n \), such that \(n + 2n + 3n + \ldots + 99n \) is a perfect square.

2. Let

\[
f(n) = \frac{1 + 2 + 3 + \ldots + n}{n}.
\]

Evaluate \(f(1) + f(2) + f(3) + \ldots + f(99) + f(100) \).

3. \(P \) is a point inside a convex polygon whose sides are all equal in length. Perpendiculars are constructed from \(P \) to the sides of the polygon. Show that the sum of the lengths of the perpendiculars is the same for all positions of \(P \).

4. Let \(A \), \(B \) and \(C \) be integers. Find the smallest possible prime \(p \), such that

\[
\frac{x^2 - p}{(x-2)(x-3)(x-5)} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{x-5}.
\]

5. Is it possible to make a 4 \(\times \) 4 square lattice of size 4 cm by 4 cm by using

(a) 5 pieces of thread, each 8 cm long?
(b) 8 pieces of thread, each 5 cm long?

![Diagram of a 4 \(\times \) 4 square lattice]

6. Find the last two digits of \(\sqrt{4^{2016} + 2 \times 6^{2016} + 9^{2016}} \).
Senior Questions

1. Given 2 three digit numbers a and b and a four digit number c. If the sum of the digits of the number $a + b$, $b + c$ and $c + a$ are all equal to 3, find the largest possible sum of the digits of the number $a + b + c$.

2. Are there integers a, b which satisfy

$$5a^2 - 7b^2 = 9?$$

Either find them or show that they do not exist.

3. Prove that there is no convex eight sided polygon with all angles equal and the sides distinct integers.