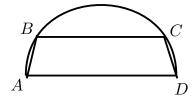


Science

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 3, May 15, 2016


- 1. Let x and y be positive integers. Find the number of solutions to 3x + 5y = 1008.
- 2. John has \$7. Each day he buys either milk for 1, orange juice for 2, or pineapple juice for 2. In how many ways can John spend his money?
- 3. Let x_1, x_2, x_3 and x_4 be non-negative integers. Find the number of solutions for

$$x_1 + x_2 + x_3 + x_4 = 40.$$

4. Solve

$$\int_0^\infty x^5 e^{-x} dx.$$

- 5. How many integers exist in the interval 0 < n < 1000, such that $1^n + 2^n + 4^n$ is divisible by 7?
- 6. An isosceles trapezium ABCD is placed inside a semi-circle such that they share the same base, AD = 4, and the lengths AB = DC = 1 are chords. Find the length BC.

Senior Questions

- 1. Let x, y, k be integers. Fermat's theorem on sums of two squares states that: A prime number p is of the form p = 4k + 1 if and only if $p = x^2 + y^2$.
 - Use the above theorem or otherwise, show that for each prime p of the form p = 4k + 1, there is only one right-angled triangle with integer side lengths a, b and p, such that $a^2 + b^2 = p^2$.
- 2. In every cell of a square table is a number. The sum of the largest two numbers in each row is a and the sum of the largest two numbers in each column is b. Prove that a = b.
- 3. A positive integer n is divided by d and the quotient and remainders are q and r respectively; that is n = dq + r. Suppose d, q and r are consecutive positive integer terms in a geometric sequence (not necessarily in that order). Prove that n cannot be prime.

For example, 58 divided by 6 has quotient 9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric sequence.