MATHEMATICS ENRICHMENT CLUB. Problem Sheet 5, May 30, 2016

1. In a right-angled triangle, the shortest side is a units longs, the longest side is c units long and the other side b units long. If a, b, c are all integers, when does $a^{2}=b+c$.
2. Let x be a positive integer, such that a is the sum of its odd digits and b is the sum of its even digits; i.e if $x=9284$, then $a=17$ and $b=6$. Prove that if $a-b$ is divisible by 11 , then so is x.
3. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are n-numbers, each can be either +1 or -1 . How many distinct values can x take, if

$$
x=x_{1}+x_{2}+\ldots+x_{n-1}+x_{n}+x_{1} x_{2} \times \ldots \times x_{n-1} x_{n} .
$$

Write down a general formula for x.
4. Find all positive integers x, y, z that satisfies the system of equations,

$$
\begin{gathered}
x y+y z+x z+2(x+y+z)=53 \\
x(y z-1)=y+x-2 .
\end{gathered}
$$

5. Consider the points of intersection of the graph $y=\cos x$ and $x=100 \cos (100 y)$ for which both coordinates are positive. Let a be the sum of their x-coordinates and b be the sum of their y-coordinates. determine the value of $\frac{a}{b}$.
6. One hundred points are marked in the plane, with no three in a line. Is it always possible to connect the points in pairs such that all fifty segments intersect one another?
7. Consider the expression $x^{x}+1$, where x is a positive integer. Given that n is a positive integer, find the least value of x for which $x^{x}+1$ is divisible by 2^{n}.

Senior Questions

1. Find the smallest number that is made up of each of the digits 1 through 9 exactly once and is divisible by 99 .
2. a, b, c, dande are consecutive positive integers less than 10,000 such that $a+b+c+d+e$ is the cube of an integer, and $b+c+d$ is the square of an integer. Find a, b, c, d, e.
3. For which real numbers x is

$$
\sqrt[3]{x+\sqrt{x^{2}+1}}+\sqrt[3]{x-\sqrt{x^{2}+1}}
$$ an integer?

