## MATHEMATICS ENRICHMENT CLUB. Solution Sheet 11, August 1, 2016

1. In the sum $29 x+30 y+31 z=366$, only the values of $x$ and $z$ affects the last digit of 366. In particular, $z=x-4+10 i$ for some integer $i$. Therefore,

$$
\begin{align*}
29 x+30 y+31 z & =366 \\
60 x+30 y-124+310 i & =366 \\
60 x+30 y+310 i & =490 \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
x+y+z=2 x-4+10 i+y . \tag{2}
\end{equation*}
$$

Since we wish to minimise the sum $x+y+z$, we want to make $|i|$ as small as possible. By (1), it is clear that the smallest possible $|i|$ is $i=1$. Therefore, (1) becomes $60 x+30 y=180$. To minises $x+y$ satisfying $60 x+30 y=180$, we take $x=3$ and $y=0$. Then by (2), $x+y+z=12$.
2. Two.

3. Since

$$
\begin{aligned}
n^{3}+100 & =n^{3}+1000-900 \\
& =(n+10)\left(n^{2}-10 n+100\right)-900
\end{aligned}
$$

For $n^{3}+100$ to be divisible by $n+10,(n+10)\left(n^{2}-10 n+100\right)$ and 900 must both be divisible by $n-10$. The former term is always divisible by $n-10$, while the later is divisible by any factors of 900 . Since the largest factor of 900 is itself, we conclude that the largest possible $n$ is 890 .
4. Let $x$ be such a five-digit natural number. Then $x$ is divisible by 5 so that the last digit of $x$ must be 5 or 0 . Therefore, the sum of the first 4 digits of $x$ must be divisible by 5 , since adding 0 or 5 to any number preserves its divisibility by 5 .

Next, to count the number of ways to form the first 4 digits of $x$. Note that there are 9 possible choices for the first digit of $x$ (since we can not have 0 as a leading digit for a five-digit number), and 10 possible choices for the second and third digits. Furthermore, once the first 3 -digits of $x$ had been chosen, there are only 2 choices for the fourth digit such that the sum of the first 4 digits of $x$ is either a multiple of 5 or 10 . Hence, we conclude that the number of ways to choose the first 4-digits of $x$ is $9 \times 10^{2} \times 2=1800$.
Finally, since there are only 2 possibilities for the last digit of $x$, the total number of ways we can form this 5 -digit natural number is $1800 \times 2=3600$.
5. First, we determine the area of the four non-shaded triangles. Let the edges of the diamond be the bases of these triangles, $h$ the height and $a$ the length of the non-base side of the triangles. Hence, trigonometric identities for the non-shade triangles, we have

$$
1^{2}=a^{2}+a^{2}-2 a \cos (120)=3 a^{2} .
$$

Hence, $a=\frac{1}{\sqrt{3}}$. Therefore, $h=a \cos (60)=\frac{1}{2 \sqrt{3}}$. So that the total area of the four non-shaded triangles is

$$
4 \times \frac{1}{2} \times \frac{1}{2 \sqrt{3}}=\frac{1}{\sqrt{3}} .
$$

Now to find the area of the circle inscribed, we note that the radius of the circle is $r=\frac{1}{2}(1-2 h)$. Therefore, the area of the circle is

$$
\pi \times\left(\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}\right)\right)^{2}=\pi\left(\frac{2-\sqrt{3}}{6}\right) .
$$

The area of the shaded region is therefore

$$
1-\left(\frac{1}{\sqrt{3}}+\pi\left(\frac{2-\sqrt{3}}{6}\right)\right) .
$$

6. We can keep as many as 2015 of this set to form the required product. Consider the product of all number from the set 1 !, 2 !, .. 2016 !,

$$
\begin{aligned}
1!\times 2!\times \ldots \times 2016! & =1^{2016} \cdot 2^{2015} \cdot 3^{2014} \cdot \ldots \cdot 2015^{2} \cdot 2016^{1} \\
& =2^{2015} \cdot 4^{2013} \cdot \ldots \cdot 2016^{1} \times 1^{2016} \cdot 3^{2014} \cdot \ldots \cdot 2015^{2} \\
& =2 \cdot 4 \cdot \ldots \cdot 2016 \times 2^{2014} \cdot 4^{2012} \cdot \ldots \cdot 2014^{2} \times 1^{2016} \cdot 3^{2014} \cdot \ldots \cdot 2015^{2} \\
& =1008!\times 2^{1008} \times 2^{2014} \cdot 4^{2012} \cdot \ldots \cdot 2014^{2} \times 1^{2016} \cdot 3^{2014} \cdot \ldots \cdot 2015^{2}
\end{aligned}
$$

The only term that is not a perfect square on the RHS of the last displayed equation is 1008 !.

## Senior Questions

1. Since $b+a$ is a multiple of $b-a, b+a=k(b-a)$ for some integer $k>1(k \neq 1$, since we are given that $a \neq 0$ ). Hence,

$$
\frac{b}{a}=\frac{k+1}{k-1}=2+\frac{2}{k-1} \geq 3
$$

Similarly, $\frac{c}{b} \geq 3$. So that $\frac{c}{a}=\frac{c}{a} \times \frac{b}{a} \leq 9$. Now since $b$ has 2012-digits, $c$ must have at least 2012-digits. Moreover, $a$ has 2011-digits and $c \leq 9 a$, which implies $c$ can not have more than 2012-digits; $c$ has exactly 2012-digits.
2. Writing out the summation, and then splitting/rearrange terms of the summation gives

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{k}{5^{k}} & =\frac{1}{5^{1}}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\ldots \\
& =\frac{1}{5^{1}}+\frac{1}{5^{2}}+\ldots+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots+\frac{1}{5^{3}}+\frac{1}{5^{4}}+\ldots \\
& =\sum_{j=1}^{\infty} \sum_{k=j}^{\infty} \frac{1}{5^{k}} .
\end{aligned}
$$

Note that $\sum_{k=j} \frac{1}{5^{k}}$ is a geometric series, with $r=\frac{1}{5}$ and initial term $a=\frac{1}{5^{j}}$, hence

$$
\sum_{k=j} \frac{1}{5^{k}}=\frac{1}{5^{j}}\left(\frac{1}{1-\frac{1}{5}}\right)=\frac{1}{5^{j}} \times \frac{5}{4}
$$

Therefore,

$$
\sum_{k=1}^{\infty} \frac{k}{5^{k}}=\sum_{j=1}^{\infty} \frac{1}{5^{j}} \times \frac{5}{4}=\frac{1}{5}\left(\frac{1}{1-\frac{1}{5}}\right) \times \frac{5}{4}=\frac{1}{5}
$$

3. Let $A C$ and $B D$ intersect at $O$. Suppose the diagonals are not perpendicular to each other. By symmetry, we may assume that $\angle A O B=\angle C O D<90^{\circ}$. Then by Pythagoras

$$
\left(|O A|^{2}+|O B|^{2}\right)+\left(|O C|^{2}+|O D|^{2}\right)>|A B|^{2}+|C D|^{2}=221
$$

while

$$
\left(|O D|^{2}+|O A|^{2}\right)+\left(|O B|^{2}+|O C|^{2}\right)<|D A|^{2}+|B C|^{2}=221
$$

This is a contradiction. Hence both angles between the diagonals are $90^{\circ}$.

