MATHEMATICS ENRICHMENT CLUB. Solution Sheet 13, August 15, 2016

1. Consider

$$
\begin{aligned}
f(x) & =(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \ldots \\
& =1+x+x^{2}+x^{3}+x^{4} \ldots+ \\
& =\frac{1}{1-x}
\end{aligned}
$$

where last line is due to the sum of an infinite geometric sequence. Hence, setting $x=1 / 2^{2}$ in $f(x)$, we have

$$
\begin{aligned}
f\left(\frac{1}{2^{2}}\right) & =\left(1 \frac{1}{2^{2}}\right)\left(1 \frac{1}{2^{4}}\right)\left(1 \frac{1}{2^{8}}\right)\left(1 \frac{1}{2^{16}}\right) \ldots \\
& =\frac{1}{1-\frac{1}{2^{2}}} \\
& =\frac{4}{3}
\end{aligned}
$$

2. Let x be the different of their ages in days. When Alice was twice as old as Bert was, their ages are $2 x$ and x. When Bert's age was $2 \times(2 x)$, Alice's age was $5 x$. In another 1296 days Bert's age will be $2 \times(5 x)=10 x$, and Alice's age will be $11 x$. Therefore,

$$
(10 x-1296)+(11 x-1296)=11016
$$

Solving the above equation gives $x=648$.
So Alice's age is $11 x-1296=5832$ and Bert's age is $10 x-1296=5184$.
3. Note that $f(x) \geq 2$ is equivalent to $x+\frac{1}{x}-2 \geq 0$. We have

$$
\begin{aligned}
x+\frac{1}{x}-2 & =\frac{1}{x}\left(x^{2}+1-2 x\right) \\
& =\frac{1}{x}(x-1)^{2} \\
& \geq 0
\end{aligned}
$$

where we have used the fact that $(x-1)^{2} \geq 0$, and assumption that $x>0$ to obtain the last line.
4. Since $2^{x}=6^{-z}$, we have

$$
\begin{equation*}
2=6^{-\frac{z}{x}} \tag{1}
\end{equation*}
$$

Similarly, since $3^{y}=6^{-z}$, we have

$$
\begin{equation*}
3=6^{-\frac{z}{y}} . \tag{2}
\end{equation*}
$$

Therefore, combining (1) and (2), we have

$$
6=2 \times 3=6^{-\frac{z}{x}} \times 6^{-\frac{z}{y}}=6^{-\frac{z}{x}-\frac{z}{y}} .
$$

In particular,

$$
1=-\frac{z}{x}-\frac{z}{y}
$$

so that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0
$$

5. The solution is 89 . This can be obtain by using binomial expansion carefully.

Alternatively, note that

$$
\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{11}+\left(\frac{1-\sqrt{5}}{2}\right)^{11}}{\sqrt{5}}
$$

is the $11^{\text {th }}$ term of the Fibonacci number, see https://en.wikipedia.org/wiki/ Fibonacci_number or Question sheet 6, 2016.
6. Let x the number of dollars and y the number of cents on the cheque. Note that three times the value of the cheque must be less than $\$ 100.22$, which implies $x<34$. Now, we can write the value of the cheque as $100 x+y$ cents, then the amount the bankers gave out was $3(100 x+y)-22$ cents. Therefore,

$$
\begin{aligned}
100 y+x & =3(100 x+y)-22 \\
97 y & =299 x-22 \\
97(y-3 x) & =8 x-22 .
\end{aligned}
$$

Hence, using $x<34$

$$
\begin{equation*}
97(y-3 x)=8 x-22 \leq 250 \tag{3}
\end{equation*}
$$

The LHS equality of (3) implies $y-3 x$ must be even. The RHS inequality implies $y-3 x \leq 2$. From this, we conclude that

$$
\begin{aligned}
& y-3 x=2 \\
& 97 \times 2=8 x-22 .
\end{aligned}
$$

Solving the above system simultaneously yields $x=87$ and $y=27$.

Senior Questions

1. Let $f(x)$ denote the number of consecutive primes between x and $x+2015$. Clearly $f(1)>15$. Moreover, for consecutive inputs x and $x+1$, the function f can only vary by 0,1 or -1 ; i.e $f(x)$ differs to $f(x+1)$ at most ± 1. Hence, if we can find an integer n, such that $f(n)=0$, then since $f(1)>15$ and given how "smoothly" f varies, there exist an integer $1<m<n$ such that $f(m)=15$.
The integer n exist: we can find it directly, as $n=2016!+2$, implies $f(n)=0$.
2. Suppose n exist, then there is a prime number p, such

$$
\begin{aligned}
n^{3}-9 n+27 & =81 p \\
n^{3} & =81 p+9 n-27 \\
& =9(9 p+n-3) .
\end{aligned}
$$

Hence, n^{3} is divisible by 9 which implies n is divisible by 3 . Therefore, there is an integer k, such that $n=3 k$. But then

$$
n^{3}-9 n+27=27 k^{3}-27 k+27=27[k(k-1)(k+1)+1],
$$

which is not divisible by 81 , since $k(k-1)(k+1)$ is always divisible by 6 . This is a contradiction.

3. Label the shade quadrilateral by $W Z Y X$, and let T be a point external to $A D C B$ such that $A T Z W$ is a parallelogram; as shown above. It is straight forward to show that $W Z Y X$ forms a parallelogram, and $W Z Y X$ is congruent to $A T Z W$.
Note that $\triangle A D W$ and $\triangle G D Z$ are similar. Hence, if the area of $\triangle G D Z$ is x, then the area of $\triangle A D W$ is $4 x$. Thus, the area of the quadrilateral $A G Z W$ is $3 x$. Moreover, $\triangle A T G$ is congruent to $\triangle G D Z$. Hence, the area of $\triangle A T G$ is x. Thus, the area of the parallelogram $A T Z W$ is $4 x$. Since $W Z Y X$ is congruent to $A T Z W$, it follows that the shaded region is $4 x$.
Now suppose the area of $\triangle A W H$ is y, then by similar arguments as before, the area of $W Z X Y$ is $4 y$. Hence, $x=y$.
Finally by symmetry, the area of $\triangle A D W$ is equal to the area of $\triangle Y C B$, and the area of $\triangle A X B$ is equal to the area of $\triangle D C Z$. In particular, each triangle $\triangle A D W$, $\triangle Y C B, \triangle A X B$ and $\triangle D C Z$ have area $4 x$, and $W Z Y X$ have area $4 x$. It follows that since the area of $A D C B$ is 1 , the area of $W Z Y X$ is $\frac{1}{20} \times 4=\frac{1}{5}$.

