MATHEMATICS ENRICHMENT CLUB. Problem Sheet 13, August 21, 2017

1. Given that x and y are integers, find all solutions to

$$
3 x^{2}-8 x y+4 y^{2}=-12
$$

2. Write the quartic $x^{4}+4$ as the product of two quadratics. What about $x^{4}+1$?
3. Find all positive integers x, y and z such that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{5}{8}
$$

(Hint: Suppose $x \leq y \leq z$ and hence find the possible values of x.)
4. An octagon is created by joining the vertices and midpoints of the sides of a unit square as shown below.

Calculate the area of the octagon.
5. In how many ways is it possible to write 1000 as a sum of consecutive odd integers?
6. Let n be an integer greater than 1 . The tau-function, $\tau(n)$ is defined as the number of divisors of n (including n itself). For example, the divisors of 6 are 1, 2, 3 and 6 , so

$$
\tau(6)=4
$$

(a) Evaluate $\tau(7), \tau(10)$ and $\tau(25)$.
(b) What can you say about a number m if $\tau(m)=2$? What if $\tau(m)$ is odd?
(c) Determine a formula for $\tau(n)$.

Senior Questions

1. Find the sum

$$
S=\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\ldots+\frac{1}{(3 n-2)(3 n+1)}
$$

2. Let $I=\int \sec \theta d \theta$.

In this question, we will evaluate I in two different ways.
(a) METHOD I: Show that

$$
\sec \theta=\frac{\cos \theta}{1-\sin ^{2} \theta}
$$

Hence evaluate I.
(b) METHOD II: Show that if $f(\theta)=\sec \theta+\tan \theta$, then

$$
\frac{f^{\prime}(\theta)}{f(\theta)}=\frac{\sec \theta(\sec \theta+\tan \theta)}{(\sec \theta+\tan \theta)}
$$

Hence evaluate I.
(c) Reconcile the results of Method I and Method II.
3. Let n be an integer greater than 1 . The sigma-function, $\sigma(n)$ is defined as the sum of the divisors of n (including n itself). For example, the divisors of 6 are 1, 2, 3 and 6 , so

$$
\sigma(6)=1+2+3+6=12 .
$$

Find a formula for $\sigma(n)$.

