MATHEMATICS ENRICHMENT CLUB. Problem Sheet 11, August 6, 2018

1. Let $A B C$ be a triangle, with $A M$ being one of its medians. Prove that the perpendicular distances from B and C to the line through $A M$ are equa ${ }^{1}$

2. (a) Show that 120 is a divisor of $n^{5}-5 n 3+4 n$ for every integer n.
(b) Show that 49 is not a divisor of $n^{2}+n+2$ for any integer n.
3. Three people, A, B and C, entered a competition. After the event, A reported "B was second, C was first." B said, "A was second, C was third." C said, "A was first, B was third." If each report contains one true statement and one falsehood, which of A or B performed better in the competition?
4. (a) Write 0.75 in base 2.
(b) Write 0.96875 in base 2.
(c) By writing the infinitely long sum

$$
\frac{1}{2}+\frac{1}{4}+\cdots \frac{1}{2^{k}}+\cdots
$$

in base 2, deduce its value.
5. Find all pairs of integers x and y such that $x^{3}-y^{3}=1729$. Show that there are no others.

[^0]
Senior Questions

1. An alternative coordinate system. Usually, the coordinates of a point in the number plane are given using rectangular coordinates. Coordinates can also be given using a polar coordinate system.
Suppose we have a point P lying in the number plane. The polar coordinates of P are given as (r, θ), where r is the length of the ray $O P$, and θ is the angle (in radians) formed between $O P$ and positive x axis measured in the counter-clockwise di-
 rection.
(a) Convert the following points from polar to rectangular coordinates:
i. $\left(\sqrt{2}, \frac{\pi}{4}\right)$
ii. $\left(1, \frac{3 \pi}{2}\right)$
iii. $\left(\sqrt{3}, \frac{5 \pi}{3}\right)$.
iv. $\left(2, \frac{7 \pi}{6}\right)$
(b) The equation of a curve can also be given in terms of polar coordinates, usually in the form $r=f(\theta)$. For example, the equation of the unit circle in polar coordinates is $r=1$. On separate axes, draw the graphs of the following curves given in polar form.
i. $r=\theta$
iii. $r=\sin (3 \theta)$
ii. $r=\cos (2 \theta)$
iv. $r=1+2 \cos \theta$
2. The Simson Line Let $A B C$ be any triangle. Let P be a point on the circumscribed circle of $\triangle A B C$. Let D, E, and F be the feet of the perpendicular from P to the sides of the triangle (extended as necessary). Prove that D, E, and F are collinear. ${ }^{2}$

[^1]
[^0]: ${ }^{1}$ Adapted from AP Kiselev Kiselev's Geometry: Planimetry, Tr. A Givental, 2006.

[^1]: ${ }^{2}$ This question is adapted from R. Hartshorne, Geometry: Euclid and Beyond, p 61

