MATHEMATICS ENRICHMENT CLUB. Problem Sheet 2, May 14, 2018

1. What is the smallest number divisible by $1,2,3, \ldots, 10$?
2. Suppose n is an integer greater than 1 .
(a) Show that $n^{2}+n$ lies strictly between two squares and so cannot be a square.
(b) Use the same idea to show that $n^{4}+n^{3}+n^{2}+n$ is not a perfect square. (Note that it is when $n=1$.)
3. Find the side length of the square whose base lies on the base of an isosceles triangle with sides 10,10 and 12 , with two vertices touching the equal sides $0 f$ the triangle.
4. Find the largest positive integer that when divided into each of 364,414 and 539 leave the same reminder.
5. Let $A B$ be a chord of a circle centre O and let P be a point on its circumference. If $\angle A P B=\angle A O B$, find this angle.
6. There are 128 coins of two different weights, 64 of each. How can one always find two different coins by performing no more than 7 weighings on a regular balance?

Senior Questions

1. It can be shown that the sum to infinity of the series

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{6} .
$$

Use this to find the sum to infinity of the series

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots
$$

and

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots
$$

2. Robin Hood's apprentice still has a lot to learn when it comes to archery. She can always hit the target, but is equally likely to hit any point on the target. On a square target, what is the probability that she will land the arrow closer to the bullseye (the centre) than an edge?
