MATHEMATICS ENRICHMENT CLUB. Problem Sheet 5, June 4, 2018

1. If a and b are positive integers with $a>b$, and $(a+b)^{2}-(a-b)^{2}>29$, find the smallest possible value of a.
2. If the straight line $y=x+c$ meets the circle $x^{2}+y^{2}=1$ at a single point, find the value(s) of c.
3. Let $A B C$ be a triangle. Prove that the perpendicular bisectors of the sides $A B, A C$ and $B C$ intersect at a single point. (This point is called the circumcentre of the triangle.)

4. Without using a calculator, show that

$$
\sqrt[3]{5 \sqrt{13}+18}-\sqrt[3]{5 \sqrt{13}-18}=3
$$

Hint: Let $x=a-b$ and then cube.
5. If x and y are positive integers which satisfy $x^{2}-8 x-1001 y^{2}=0$, what is the smallest possible value of $x+y$?
(AMC 2012 Senior Division Q23)

Senior Questions

1. Suppose that $g(x)$ is an odd function. Show that, if g is defined at $x=0$, then $g(0)=0$.
2. (a) Suppose that $f(x)$ is an even function defined for all real x and differentiable throughout its domain. Show that $f^{\prime}(x)$ is an odd function.
(b) Similarly, suppose that $g(x)$ is an odd function defined for all real x and differentiable throughout its domain. Show that $g^{\prime}(x)$ is an even function.
3. Suppose that $h(x)$ is defined for all real x. Then $h(x)$ can be written as

$$
h(x)=f(x)+g(x),
$$

where f is an even function and g is an odd function. Explain how to do this.
4. Is there a function, defined for all real x, that is both odd and even?

