

Science

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 9, July 2, 2018

- 1. The angles in a triangle are in the ratio 2:3:4. Find, in degrees, the size of the largest angle.
- 2. How many digits does the number 125^{100} have?
- 3. Let ABC be a triangle with AM one of its medians.

Prove that AM is smaller than the semi-perimeter of $\triangle ABC$. That is, show that $AM < \frac{1}{2}(AB + BC + AC)^1$.

4. Let

$$\alpha = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

Evaluate α .

- 5. (a) Find the greatest common divisor of $2^{50} + 1$ and $2^{20} + 1$.
 - (b) Explain why the greatest common divisor of $2^m + 1$ and $2^n + 1$ is at least three if m and n are both odd.

¹This question is adapted from A. P. Kiselev, *Geometry: Planimetry*, tr. A Givental, 2006

Senior Questions

1. The Miquel Point. Let ABC be a triangle. Let D, E and F be points on the sides of the triangle. Show that circles through ADE, BDF and CEF intersect at a common point G as shown.²

2. By considering the equation $\cos(A+B) + \sin(A-B) = 0$ find the general solution (for θ) of

 $\cos(n\theta) + \sin(m\theta) = 0.$

²This question is adapted from R. Hartshorne, *Geometry: Euclid and Beyond*, p 61