MATHEMATICS ENRICHMENT CLUB. Solution Sheet 11, 13 August, 2018

1. Let $B E$ and $C F$ be perpendiculars dropped from B and C to $A M$, extended if necessary. We need to prove that $B E=C F$.

Since $B E$ and $C F$ are both perpendicular to $A M, \angle B E D=\angle D F C=90^{\circ}$, and since $A M$ is a median, $B M=C M$. Moreover, $\angle B D E=\angle C D F$, since $\angle B D E$ and $\angle C D F$ are vertically opposite. Thus $\triangle B D E \equiv \triangle C D F$ by AAS. Thus $B E$ and $C F$ are corresponding sides in congruent triangles and hence equal.
2. (a) To begin, $n^{5}-5 n 3+4 n$ can be factored as $(n+2)(n+1) n(n-1)(n-2)$. That is, if n is an integer, then $n^{5}-5 n 3+4 n$ is the product of five consecutive integers, and hence can be divided by each of $5,4,3$ and 2 . Thus it must be divisible by 120.
(b) Conversely, suppose that 49 is a divisor of $n^{2}+n+2$ for some integer n. Then $n^{2}+n+2=(n+4)^{2}-7(n+1)$ and both $(n+4)^{2}$ and $7(n+2)$ must be divisible by 49 , or both $(n+4)$ and $(n+2)$ by 7 . This is not possible.
3. If A was truthful about B coming second, then B must be lying about A coming second and C about B coming third, so the order would be ABC .

If A was truthful about C coming first, then B must be lying that C was third and C about A coming first, so the order would be CAB. Either way, A beat B.
4. (a) $0.75_{10}=0.11_{2}$, since $0.75=\frac{1}{2}+\frac{1}{4}=1 \times \frac{1}{2^{1}}+1 \times \frac{1}{2^{2}}$
(b) $0.96875_{10}=0.11111_{2}$ in base 2 .
(c)

$$
\frac{1}{2}+\frac{1}{4}+\cdots \frac{1}{2^{k}}+\cdots=0 . \dot{1}_{2}=1
$$

If you are not convinced of this last fact, let $x=0 . \dot{1}_{2}$. Then

$2 x$	$=1 . \dot{1}_{2}$		(1)
x	$=0 . \dot{1}_{2}$	(2)	
x	$=1$		$(1)-(2)$

5. Firstly, we note that $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$. Then, we find the prime factorisation of $1729=7 \times 13 \times 19$. Thus the possible factors of 1729 are $1,7,13,19$, $91,133,247$, and 1729 itself. If we assume that $x-y=1$, then

$$
x^{2}+x y+y^{2}=1729
$$

Furthermore, we can substitute $x=y+1$ into this second equation, thereby obtaining a quadratic in y. In this case, the quadratic does not have integer solutions, as Δ is not a perfect square. However, continuing this way through all the possibilities, we obtain the solutions $(-1,12),(1,-12),(-9,10)$ and $(9,-10)$.

Senior Questions

1. (a) i. $(1,1)$
ii. $(0,-1)$
iii. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$.
iv. $(-\sqrt{3}, 1)$
(b) The graphs should be as follows:
i. $r=\theta$
ii. $r=\cos (2 \theta)$
iii. $r=\sin (3 \theta)$
iv. $r=1+2 \cos \theta$

2. Join $C P$ and $P B$ as shown.

Let $\angle A C B=\alpha, \angle B C P=\beta$ and $\angle F D P=\gamma$. Let D and E be the feet of perpendiculars from P to the sides of the triangle as shown. Extend a line through D and E, and let F be the point of intersection of $D E$ with the side $A B$ (extended if necessary). We have to show that $\angle B F P=90^{\circ}$.
Now $\angle P D C=\angle P E C=90^{\circ}$, so $D E C P$ is a cyclic quadrilateral. Thus $\angle D E P=$ $\angle D C P=\beta$. Furthermore, by the angle sum of $\triangle E C G, \angle E G C=90^{\circ}-\alpha$. But $\angle E G C=\angle G D E+\angle D E G$, by the exterior angle theorem. And this implies that $\angle E D G=90^{\circ}-(\alpha+\beta)$. Since $\angle B D F$ and $\angle E D G$ are vertically opposite, $\angle B D F=$ $\angle E D G=90^{\circ}-(\alpha+\beta)$. Consequently, $\gamma=\alpha+\beta$.

Since $B A C P$ is a cyclic quadrilateral $\angle A B C+\angle A C P=180^{\circ}$. Thus $\angle A B P=180^{\circ}-$ $\angle A C P=180^{\circ}-(\alpha+\beta)$, which implies that $\angle F B P=\alpha+\beta=\gamma$. Thus $\angle F B P=$ $\angle F D P$, and so $F B D P$ is a cyclic quadrilateral also. Hence $\angle B F P+\angle B D P=180^{\circ}$, and so $\angle B F P=90^{\circ}$, as required.

