1. Let BE and CF be perpendiculars dropped from B and C to AM, extended if necessary. We need to prove that $BE = CF$.

Since BE and CF are both perpendicular to AM, $\angle BED = \angle DFC = 90^\circ$, and since AM is a median, $BM = CM$. Moreover, $\angle BDE = \angle CDF$, since $\angle BDE$ and $\angle CDF$ are vertically opposite. Thus $\triangle BDE \equiv \triangle CDF$ by AAS. Thus BE and CF are corresponding sides in congruent triangles and hence equal.

2. (a) To begin, $n^5 - 5n^3 + 4n$ can be factored as $(n + 2)(n + 1)n(n - 1)(n - 2)$. That is, if n is an integer, then $n^5 - 5n^3 + 4n$ is the product of five consecutive integers, and hence can be divided by each of 5, 4, 3 and 2. Thus it must be divisible by 120.

(b) Conversely, suppose that 49 is a divisor of $n^2 + n + 2$ for some integer n. Then $n^2 + n + 2 = (n + 4)^2 - 7(n + 1)$ and both $(n + 4)^2$ and $7(n + 2)$ must be divisible by 49, or both $(n + 4)$ and $(n + 2)$ by 7. This is not possible.

3. If A was truthful about B coming second, then B must be lying about A coming second and C about B coming third, so the order would be ABC.

If A was truthful about C coming first, then B must be lying that C was third and C about A coming first, so the order would be CAB. Either way, A beat B.
4. (a) $0.75_{10} = 0.11_2$, since $0.75 = \frac{1}{2} + \frac{1}{4} = 1 \times \frac{1}{2^1} + 1 \times \frac{1}{2^2}$

(b) $0.96875_{10} = 0.11111_2$ in base 2.

(c)
\[
\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^k} + \cdots = 0.\dot{1}_2 = 1
\]

If you are not convinced of this last fact, let $x = 0.\dot{1}_2$. Then

\[
\begin{align*}
2x &= 1.\dot{1}_2 \\
x &= 0.\dot{1}_2 \\
\hline
x &= 1
\end{align*}
\]

(1) \hspace{1cm} (2)

5. Firstly, we note that $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$. Then, we find the prime factorisation of $1729 = 7 \times 13 \times 19$. Thus the possible factors of 1729 are 1, 7, 13, 19, 91, 133, 247, and 1729 itself. If we assume that $x - y = 1$, then

\[x^2 + xy + y^2 = 1729.\]

Furthermore, we can substitute $x = y + 1$ into this second equation, thereby obtaining a quadratic in y. In this case, the quadratic does not have integer solutions, as Δ is not a perfect square. However, continuing this way through all the possibilities, we obtain the solutions $(-1, 12), (1, -12), (-9, 10)$ and $(9, -10)$.

Senior Questions

1. (a) i. $(1, 1)$ ii. $(0, -1)$ iii. $\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$ iv. $(-\sqrt{3}, 1)$

(b) The graphs should be as follows:

i. $r = \theta$ ii. $r = \cos(2\theta)$ iii. $r = \sin(3\theta)$ iv. $r = 1 + 2\cos \theta$
2. Join \(CP \) and \(PB \) as shown.

Let \(\angle ACB = \alpha \), \(\angle BCP = \beta \) and \(\angle FDP = \gamma \). Let \(D \) and \(E \) be the feet of perpendiculars from \(P \) to the sides of the triangle as shown. Extend a line through \(D \) and \(E \), and let \(F \) be the point of intersection of \(DE \) with the side \(AB \) (extended if necessary). We have to show that \(\angle BFP = 90^\circ \).

Now \(\angle PDC = \angle PEC = 90^\circ \), so \(DECP \) is a cyclic quadrilateral. Thus \(\angle DEP = \angle DCP = \beta \). Furthermore, by the angle sum of \(\triangle ECG \), \(\angle EGC = 90^\circ - \alpha \). But \(\angle EGC = \angle GDE + \angle DEG \), by the exterior angle theorem. And this implies that \(\angle EDG = 90^\circ - (\alpha + \beta) \). Since \(\angle BDF \) and \(\angle EDG \) are vertically opposite, \(\angle BDF = \angle EDG = 90^\circ - (\alpha + \beta) \). Consequently, \(\gamma = \alpha + \beta \).

Since \(BACP \) is a cyclic quadrilateral \(\angle ABC + \angle ACP = 180^\circ \). Thus \(\angle ABP = 180^\circ - \angle ACP = 180^\circ - (\alpha + \beta) \), which implies that \(\angle FBP = \alpha + \beta = \gamma \). Thus \(\angle FBP = \angle FDP \), and so \(FBDP \) is a cyclic quadrilateral also. Hence \(\angle BFP + \angle BDP = 180^\circ \), and so \(\angle BFP = 90^\circ \), as required.