
MATHEMATICS ENRICHMENT CLUB.
Solution Sheet 14, September 3, 2018

1. Let the middle number be n (usually I find that doing this leads to some simplification
in the subsequent algebra). Then the three consecutive cubes are n− 1, n and n + 1,
so the sum is

(n− 1)3 + n3 + (n+ 1)2 = (n3 − 3n2 + 3n− 1) + n3 + (n3 + 3n2 + 3n+ 1)

= 3n3 + 6n

= 3n(n2 + 2)

Clearly this sum has a factor of 3, irrespective of the value of n, so we only need to
check if n(n2 + 2) is a multiple of 6. So drawing up the following table in mod 6, we
have

n n2 + 2 n(n2 + 2)

0 2 0
1 3 3
2 0 0
3 5 3
4 0 0
5 3 3

If n ≡ 0, 2, 4 mod 6, then the sum is divisible by 18. This means that the first number
in the sum must be an odd number.

2. Suppose that the distances from D to the respective vertices are x, y and z, as shown
in the diagram.

A

B

C

D
x

y

z
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By the triangle inequality,

x+ y > AB,

y + z > BC,

x+ z > AC.

Adding these three inequalities together, we have

2x+ 2y + 2z > AB +BC + AC,

so

x+ y + z >
1

2
(AB +BC + AC).

3.

A B
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β

Now ∠EPB = ∠EQB = 90◦, and since the diagonals of a rhombus bisect the angles,
∠PBE = ∠QBE. Furthermore, EB is common, so 4EPB ≡ 4EQB by AAS. Thus
EP = EQ, as they are corresponding sides in congruent triangles. In a similar fashion,
we can show that EP , EQ, ER and ES are all equal.

Now consider the quadrilateral PBQE. Let ∠PBQ = α and ∠PEQ = β. Since
∠EPB = ∠EQB = 90◦, ∠PBQ and ∠PEQ are supplementary: that is α+β = 180◦.
By a similar argument, we can show that ∠SAP and ∠SEP are supplementary. As
AD is parallel to BC, ∠SAP and ∠PBQ are co-interior angles. Thus ∠SAP = β,
and hence ∠SEP = α, which implies that∠SEQ = α + β = 180◦, and so SQ is a
straight line. In a similar fashion, we can show that PR is a straight line. Thus the
quadrilateral PQRS has diagonals SQ and PR that are equal and bisect each other,
and hence is a rectangle.

4. First, let’s note that to end up heads up, the coin would have to be flipped an odd
number of times. Take the nth coin in the line, how many times does it get flipped?
Every coin gets flipped on the first pass, but only every second on the second pass—
that is, only those coins whose position is divisible by 2. Similarly, on the 3rd pass
only those coins sitting on multiples of 3 get flipped. So the nth coin will get flipped
on the mth pass if m is a factor of n.

If n is written in terms of its prime factorisation, n = pd11 p
d2
2 . . . pdkk , then any factor

must be able to be written as n = pc11 p
c2
2 . . . p

ck
k where 0 ≤ ci ≤ di. Thus the number

of factors of n is the product of the number of possibilities for choosing each ci. There
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are di+1 choices for ci (0, 1, . . . , di) so in total n has (d1 +1)(d2 +1)(d3 +1) . . . (dk +1)
factors. (You may recall the ‘tau’ function, τ(n), from a problem sheet last year.) For
n to have an odd number of factors then every di must be even, implying that n is a
perfect square. So the coins that end up heads up are those that are positioned at a
perfect square, i.e. 1, 4, 9, 16, . . ..

The square root of 1000 is 31.62277 . . ., so 312 is the largest perfect square less than
1000. Thus only 31 coins out of the 1000 end up heads up.

5. Note that 792 = lcm(88, 99). Then(
(88!)1/88

)729
= (88!)9(

(99!)1/99
)729

= (99!)8

Consequently,

(99!)8

(88!)9
=

(
99!

88!

)8
1

88!

=
(99× 98× . . .× 89)8

88× 87× . . .× 2× 1
.

If you consider this fraction, we can see that there are 88 numbers in both numerator
and denominator. However, every number in the numerator is larger than every number
in the denominator. So this fraction is greater than one. Hence

(99!)8 > (88!)9.

Taking the 792nd root of both sides (which is OK because both numbers are positive)
we have

(99!)1/99 > (88!)1/88,

or
99
√

99! >
88
√

88!.

Senior Questions

1. (a) Substituting y = tx+ t into x2 + y2 = 1, we have

x2 + (tx+ t)2 = 1

(1 + t2)x2 + 2t2x+ t2 − 1 = 0

∴ x =
−2t2 ±

√
4t4 − 4(1 + t2)(t2 − 1)

2(1 + t2)

=
−2t2 ±

√
4t4 − 4(t4 − 1)

2(1 + t2)

=
−t2 ±

√
1

1 + t2

= −1,
1− t2

1 + t2
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Clearly, x = −1 corresponds to the point Q. Substituting x = 1−t2
1+t2

into y = tx+t,

we obtain y = 2t
1+t2

. Thus the coordinates of P are
(

1−t2
1+t2

, 2t
1+t2

)
.

(b) Typically, we parametrise the unit circle in terms of θ, where θ is the angle between
the ray OP and the positive x axis. Then we have x = cos θ and y = sin θ. Here,
we have used an alternative parametrisation using the point of intersection of the
line y = tx+ t and the unit circle (at least for the part of the unit circle lying in
the first quadrant).

As you can see in the diagram below, 4OPQ is isosceles, and thus ∠OPQ =
∠OQP . Furthermore, by the exterior angle theorem, ∠OPQ+∠OQP = θ. Hence
∠OQP = θ

2
. But ∠OQP is also the angle of incidence of the line y = tx+t, which

has gradient t. Hence t = tan θ
2
.

x

y

x2 + y2 = 1

y = tx+ t

P

Q

RO
θ

(c) If we drop a perpendicular from P to the x axis at R, then 4OPR is a right angle
triangle with sides in the ratio

1− t2

1 + t2
:

2t

1 + t2
: 1.

Let t ∈ (0, 1) be a rational number. That is, t = p
q
, where p and q are positive

integers (in lowest terms) and p < q. Then the sides of 4OPR, expressed in
terms of p and q, are

1− (p/q)2

1 + (p/q)2
:

2(p/q)

1 + (p/q)2
: 1.

Since we want the triangle to have integer sides, we multiply this ratio by q2
(

1 + p2

q2

)
to clear out the denominators of the two fractions. We then obtain the ratio

q2 − p2 : 2pq : p2 + q2,

which gives us a Pythagorean triple. Each rational value of t ∈ (0, 1) corresponds
to a different Pythagorean triple, and since there are an infinite number of rational
numbers in the interval (0, 1), there are an infinite number of right-angled triangles
with integer sides.
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2. (a) Let C be a circle centred at O. Let P be a point lying in the plane, and let A be
an arbitrary point on C. There are two possibilities to consider: (i) P lies outside
the circle or (ii) P lies inside the circle.

Firstly, suppose that P lies outside the circle. Let B be the point of intersection
between C and the line through OP that lies in-between O and P , as shown in
the diagram.

A

C
P

OB

By the triangle inequality, AP +OA ≥ OP = PB+OB. But OA = OB, as they
are both radii of the circle C. Thus AP ≥ PB, and since A is an arbitrary point
on C, this means that B is the point closest to P .

Now suppose that P lies inside the circle. Let B be the point of intersection
between C and the line through OP such that P lies between B and O, as shown
in the diagram.

A

C

P OB

We need to show that AP ≥ BP . By the triangle inequality, OP + AP ≥ OA.
But OA = OB = OP + BP . Thus OP + AP ≥ OP + BP , which implies that
AP ≥ BP , as required.

(b) We will use the fact that, for any z ∈ C, |z|2 = zz. Thus

|z − w|2 = (z − w)(z − w)

= zz − zw − wz + ww

= |z|2 − zw − wz + |w|2

= r2 + 1− (zw + wz)
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Now in polar form,

zw + wz = r(cos θ + i sin θ)(cosφ− i sinφ) + (cosφ+ i sinφ)r(cos θ − i sin θ)]

= r[(cos θ cosφ− i sinφ cos θ + i sin θ cosφ+ sin θ sinφ)

+ (cos θ cosφ− i sin θ cosφ+ i sinφ cos θ + sin θ sinφ)]

= 2r(cos θ cosφ+ sin θ sinφ)

= 2r cos(θ − φ).

So

|z − w|2 = r2 + 1− 2r cos(θ − φ).

Thus |z − w|2 is minimized when cos(θ − φ) = 1. That is, when φ = θ.

<(z)

=(z)

w = cosφ+ i sinφ

|w| = 1

z = r(cos θ + i sin θ)

θ
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