MATHEMATICS ENRICHMENT CLUB. Solution Sheet 15, September 10, 2018

1. If Cog-1 rotates clockwise, Cog-2 must rotate counter clockwise, and so Cog-3 must rotate clockwise and so on.Thus all the odd-numbered cogs must rotate the same way. This means that if Cog-127 is connected to Cog-1, then the cogs cannot be turned.
2. We can work out the side lengths for each square. Let the lower-case letter for a square represent its side length. Then say $b=c-1, g=c-2, f=c-3$ and so on. With a bit of work we can determine that the total area is 1056 .
3. Suppose that we are given the length of a side s, the sum of the diagonals, d, and the angle between them, θ.
(i) Construct a line $A B$ equal to $\frac{d}{2}$.
(ii) Construct a ray, $A C$, at an angle of $\phi=\frac{\theta}{2}$ to $A B$.
(iii) Using the compasses, find the point D lying on $A C$ which is at a distance s from B.
(iv) Construct a ray $D E$, also at an
 angle of phi to $A C$, that intersects $A B$ at E.

Now since $\angle E A D=\angle E D A, \triangle A E D$ is isosceles and hence $D E=A E$, which means that $D E+E B=A B=\frac{d}{2}$. Furthermore, by the exterior angle theorem, $\angle D E B=$ $\angle D E A+\angle E A D=\theta$.
(v) Extend $D E$ and $B E$.
(vi) Using the compasses, find point F on $D E$ such that $E F=D E$, and point G on $B E$ such that $E G=B E$.

Then $D F$ and $B G$ bisect each other and hence $D B F G$ is a parallelogram. Moreover, $D F+B G=d$, the angle between $D F$ and $G B$ is θ, and the length of the side $D B$ is s. Thus $D B F G$ has the required properties.
4. If a number is written in its prime factorisation $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$, then for it to be powerful each of the $m_{i} \geq 2$ and for it to be a perfect power all $m_{i}=c$, a constant. Thus for n to be powerful but not a perfect power all the m_{i} must be greater than 2 , but not all the same. The smallest then, would be $2^{3} \times 3^{2}=72$.
5. Let O be the centre of \mathcal{M}, and let D be the midpoint of $B C$.

(a) Then $\angle B O C=2 A$, as the angle at the centre is twice the angle at the circumference. Furthermore, $\angle O D B=90^{\circ}$, as the perpendicular bisector of a chord passes through the centre. Thus $\triangle B D O$ is a right angled triangle with $\angle B O D=A$, $O B=r$ and $D B=\frac{a}{2}$. Consequently,

$$
\begin{aligned}
\sin A & =\frac{D B}{O B} \\
& =\frac{a / 2}{r}
\end{aligned}
$$

This can be rearranged as $2 r=\frac{a}{\sin A}$.
(b) We could repeat the previous argument replacing A with B and a with b to show that $2 r=\frac{b}{\sin B}$. Similarly, it can be shown that $2 r=\frac{c}{\sin C}$. Thus

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Senior Questions

1. (a) Consider the following triangle, which has its vertices labelled A, B, C in a clockwise fashion from the top. We will consider this as the initial position of the triangle.

Then there are three rotations (measured in the counter-clockwise direction), which I will designate R_{60}, R_{120} and R_{360}.

And there are three reflections in the three axes of symmetry of the triangle (flips). I have designated these as F_{90}, F_{210}, and F_{330}, depending on which axis of symmetry is used for the flip.

You can also think of these six operations as the six possible permutations of the letters A, B and C.
(b) Consider the following: R_{60} followed by F_{210} is the same as F_{330}.

But F_{210} followed by R_{60} followed by is the same as F_{90}.

Interestingly, there is a subset of the operations that do commute with each other. Can you see which ones they are?
(c) Obviously, this is R_{360}, the "do nothing" operation. (I could also have called it R_{0}.)
(d) Clearly, R_{360} is it's own inverse, as are the three flipping operations- F_{90}, F_{210} and F_{330}. The two other rotations, R_{60} and R_{120}, are inverses of each other.

