MATHEMATICS ENRICHMENT CLUB.
Solution Sheet 15, September 10, 2018

1. If Cog-1 rotates clockwise, Cog-2 must rotate counter clockwise, and so Cog-3 must rotate clockwise and so on. Thus all the odd-numbered cogs must rotate the same way. This means that if Cog-127 is connected to Cog-1, then the cogs cannot be turned.

2. We can work out the side lengths for each square. Let the lower-case letter for a square represent its side length. Then say \(b = c - 1, \ g = c - 2, \ f = c - 3 \) and so on. With a bit of work we can determine that the total area is 1056.

3. Suppose that we are given the length of a side \(s \), the sum of the diagonals, \(d \), and the angle between them, \(\theta \).

 (i) Construct a line \(AB \) equal to \(\frac{d}{2} \).

 (ii) Construct a ray, \(AC \), at an angle of \(\phi = \frac{\theta}{2} \) to \(AB \).

 (iii) Using the compasses, find the point \(D \) lying on \(AC \) which is at a distance \(s \) from \(B \).

 (iv) Construct a ray \(DE \), also at an angle of \(\phi \) to \(AC \), that intersects \(AB \) at \(E \).

Now since \(\angle EAD = \angle EDA \), \(\triangle AED \) is isosceles and hence \(DE = AE \), which means that \(DE + EB = AB = \frac{d}{2} \). Furthermore, by the exterior angle theorem, \(\angle DEB = \angle DEA + \angle EAD = \theta \).
(v) Extend DE and BE.

(vi) Using the compasses, find point F on DE such that $EF = DE$, and point G on BE such that $EG = BE$.

Then DF and BG bisect each other and hence $DBFG$ is a parallelogram. Moreover, $DF + BG = d$, the angle between DF and GB is θ, and the length of the side DB is s. Thus $DBFG$ has the required properties.

4. If a number is written in its prime factorisation $n = p_1^{m_1} p_2^{m_2} \ldots p_k^{m_k}$, then for it to be powerful each of the $m_i \geq 2$ and for it to be a perfect power all $m_i = c$, a constant. Thus for n to be powerful but not a perfect power all the m_i must be greater than 2, but not all the same. The smallest then, would be $2^3 \times 3^2 = 72$.

5. Let O be the centre of \mathcal{M}, and let D be the midpoint of BC.

(a) Then $\angle BOC = 2A$, as the angle at the centre is twice the angle at the circumference. Furthermore, $\angle ODB = 90^\circ$, as the perpendicular bisector of a chord passes through the centre. Thus $\triangle BDO$ is a right angled triangle with $\angle BOD = A$, $OB = r$ and $DB = \frac{a}{2}$. Consequently,

$$\sin A = \frac{DB}{OB} = \frac{a/2}{r}$$

This can be rearranged as $2r = \frac{a}{\sin A}$.

(b) We could repeat the previous argument replacing A with B and a with b to show that $2r = \frac{b}{\sin B}$. Similarly, it can be shown that $2r = \frac{c}{\sin C}$. Thus

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
Senior Questions

1. (a) Consider the following triangle, which has its vertices labelled A, B, C in a clockwise fashion from the top. We will consider this as the initial position of the triangle.

Then there are three rotations (measured in the counter-clockwise direction), which I will designate R_{60}, R_{120} and R_{360}.

And there are three reflections in the three axes of symmetry of the triangle (flips). I have designated these as F_{90}, F_{210}, and F_{330}, depending on which axis of symmetry is used for the flip.

You can also think of these six operations as the six possible permutations of the letters A, B and C.

(b) Consider the following: R_{60} followed by F_{210} is the same as F_{330}.

But F_{210} followed by R_{60} followed by is the same as F_{90}.
Interestingly, there is a subset of the operations that do commute with each other. Can you see which ones they are?

(c) Obviously, this is R_{360}, the “do nothing” operation. (I could also have called it R_{0}.)

(d) Clearly, R_{360} is it’s own inverse, as are the three flipping operations—F_{90}, F_{210} and F_{330}. The two other rotations, R_{60} and R_{120}, are inverses of each other.