MATHEMATICS ENRICHMENT CLUB.
 \section*{Solution Sheet 16, September 17, 2018}

1. It requires two people to shake hands. According to the guests' claims, we see that there have been exactly $5 \times 11=55$ instances of people taking part in one half of a handshake. As this is not an even number, it cannot be twice the total number of handshakes. Thus someone is lying.
2. In the $3 \times 3 \times 3$ cube a single die could be located at a vertex, an edge, or in the centre of a face. A vertex die contributes the numbers on three of its faces to the total; an edge die contributes two; and a central die contributes only one. There are eight vertex dice; twelve edge dice and 6 central dice. Thus the smallest sum is $8 \times(1+2+3)+12 \times(1+2)+6 \times 1=90$.
3. Let the number we are seeking be x. We will calculate the digits of x by working from the leftmost digit to the right. If we fix the first digit, there are 9 ! $=362880$ ways to arrange the remaining 9. So there are 362880 numbers in the list starting with ' 0 ', then another 362880 starting with ' 1 ' and so on. Now $\lceil 999999 / 362880\rceil=3$, so

$$
2 \times 9!<1000000<3 \times 9!.
$$

Thus the first digit of x is the third digit in the list $0,1, \ldots, 9$, which is 2 . So x starts with a 2 .
If the first two digits are fixed, there are $8!=40320$ ways to arrange the remaining digits, and we find that

$$
2 \times 9!+6 \times 8!<1000000<2 \times 9!+7 \times 8!
$$

Now 2 has already been used for the first digit, so the second digit is the 7 th number remaining from $0,1,3, \ldots, 9$, which is 7 .
For the third digit, we find that

$$
2 \times 9!+6 \times 8!+6 \times 7!<1000000<2 \times 9!+6 \times 8!+7 \times 7!
$$

and so the third digit is 8 . Continuing in this fashion, we eventually find that x is 2783915460 .
4. This is basically a proof by exhaustion of cases. A two-digit narcissistic number with digits $a b$ must satisfy

$$
a^{2}+b^{2}=10 a+b,
$$

or

$$
b^{2}-b+\left(a^{2}-10 a\right)=0
$$

We can consider this as a quadratic in b, with discriminant

$$
\Delta=1-4\left(a^{2}-10 a\right)=101-4(a-5)^{2} .
$$

If a is an integer between 1 and 9 , we obtain the following values for Δ :

a	Δ
1	37
2	65
3	85
4	97
5	101
6	97
7	85
8	65
9	37

As none of these values is a perfect square, b is an irrational number in all cases. So there are no 2-digit narcissistic numbers.
5. (a) Suppose that we are given the length of the hypotenuse h and the sum of the two short sides, s.
(i) Construct a line $A B$ equal to s.
(ii) Construct a ray, $B C$, at an angle of 45° to $A B$ at B.
(iii) Using the compasses, draw an arc with radius h centered at A. Let D be the point where this arc intersects $B C$. (NB: two possible positions for D.)
(iv) Drop a perpendicular from D to $A B$.
 Let the foot of this perpendiular be E. Then $\triangle A D E$ is the desired triangle.

Proof: Clearly $\triangle A D E$ is a right-angled triangle with hypotenuse h. Furthermore, $\triangle B E D$ is an isosceles right-triangle, and hence $D E=E B$. Thus $A E+D E=$ $A B=s$, as required.
(b) Suppose that we are given the length of the hypotenuse h and the difference of the two short sides, d.
(i) Construct a line segment $A B$ with length d.
(ii) Construct a ray, $B C$, at an angle of 135° to $A B$ at B.
(iii) Using the compasses, find a point D on $B C$ that is a distance of h from A.
(iv) Extend $A B$ and drop a perpendicular from D which meets $A B$ at E.
 Then $\triangle A D E$ is the desired triangle.

Proof: Clearly $\triangle A D E$ is a right-angled triangle with hypotenuse h. Since $\angle A B D=$ $135^{\circ}, \angle D B E=45^{\circ}$. Thus $\triangle B E D$ is a right isosceles triangle and $B E=E D$. Hence $A B$ is the difference between $D E$ and $A E$, as required.

Senior Questions

1. Drawing the radii from the centre of the circle to each of the vertices of the regular n-gon makes wedges each with an angle of $\frac{2 \pi}{n}$ at the centre.

It can be shown that the side length of the n-gon is $2 r \sin \left(\frac{\pi}{n}\right)$, where r is the radius of the circle. The side $A D$ makes up a triangle across three of these wedges, so its length is $2 r \sin \left(\frac{3 \pi}{n}\right)$. Since $A D$ is the side length plus the radius,

$$
2 r \sin \left(\frac{\pi}{n}\right)+r=2 r \sin \left(\frac{3 \pi}{n}\right) .
$$

We can cancel the common factor of r and expand the right hand side using the trigonometric identity

$$
\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta
$$

We then obtain a cubic polynomial in $\sin \left(\frac{\pi}{n}\right)$. Letting $x=\sin \left(\frac{\pi}{n}\right)$, the cubic can be written as

$$
8 x^{3}-4 x+1=0
$$

Using the remainder theorem, we can easily confirm that $x=\frac{1}{2}$ is a solution to this polynomial. Then using polynomial long division, we can show that

$$
8 x^{3}-4 x+1=\left(x-\frac{1}{2}\right)\left(8 x^{2}+4 x-2\right) .
$$

Solving the quadratic with the formula, we obtain the three solutions $x=\frac{1}{2}$, and $x=\frac{-1 \pm \sqrt{5}}{4}$. From this, we can use the calculator to check that the values of n that work are $n=6$ and $n=10$.
2. Let V be the volume of water in the glass. We can calculate V using integration by slices. If we take slices parallel to the axis of symmetry of the cylinder, we get a series of similar triangular prisms, where the base is 4 times the height of the triangle.

If we let the depth of the prism be $d x$ then the volume of the prism $(d V)$ is given by

$$
\begin{aligned}
d V & =\frac{1}{2} b h d x \\
& =2 h^{2} d x
\end{aligned}
$$

If we look at the base of the cylinder, we can see that h will vary with x according to the equation $h=\sqrt{r^{2}-x^{2}}$.

Consequently,

$$
\begin{aligned}
V & =\int_{-r}^{r} 2 h^{2} d x \\
& =\int_{-r}^{r} 2\left(r^{2}-x^{2}\right) d x \\
& =4 \int_{0}^{r} r^{2}-x^{2} d x \quad \text { (by symmetry) } \\
& =4\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r} \\
& =\frac{8 r^{3}}{3}
\end{aligned}
$$

