

Science

MATHEMATICS ENRICHMENT CLUB. Solution Sheet 3, May 28, 2018

- 1. The dimensions of the brick are integers L, W and H with L + W = 9 cm and LWH = 42 cm³. This implies that $H = 42/(L \times W)$ cm. Only L = 2, W = 7 has LW divide 42, and so H = 3 cm.
- 2. A four digit palindromic number x has the form ABBA. That is, x = 1001A + 110B. Now $1001 = 7 \times 143$, but $110 = 11 \times 10$, which is not a multiple of 7. Consequently, a four-digit palindromic number that is divisible by 7 has the form A00A or A77A, where A can be any of the numbers $1, 2, \ldots, 9$. Thus there are 18 such numbers.
- 3. The internal angles of the parallelogram are 60° and 120° . Using trigonometry, it can be shown that the base of the parallelogram has length $12 + 4\sqrt{3}$ cm and the side has length $6 + 4\sqrt{3}$ cm. Thus the area is $12(9 + 5\sqrt{3})$ square centimetres.

- 4. (a) Since a + b + c = 2 and a + b > c, a + c > b and b + c > a each of a, b and c is less than one.
 - (b)

$$(1-a)(1-b)(1-c) > 0$$

1-(a+b+c) + ab + bc + ca - abc > 0
-1 + ab + bc + ca - abc > 0

and

$$(a+b+c)^{2} = 4$$

$$a^{2}+b^{2}+c^{2}+2(ab+bc+ca) = 4$$

$$ab+bc+ca = 2 - \frac{1}{2}(a^{2}+b^{2}+c^{2})$$

Combining the two yields the answer.

- 5. (a) $x_0 = 0, x_1 = 1, x_2 = 1, x_3 = 3, x_4 = 5, x_5 = 11, x_6 = 21.$
 - (b) Validate by substituting into the recursive rule $x_{n+1} = x_n + 2x_{n-1}$ and confirming that the two initial conditions are satisfied.
 - (c) Consider the sequence in mod 3.

Senior Questions

- 1. Let $p(x) = (3 + 2x + x^2)^{2018} = a_0 + a_1x + a_2x^2 + \ldots + a_{4036}x^{4036}$.
 - (a) $a_0 = p(0) = 3^{2018}$ and $a_1 = p'(0) = (2018)(3 + 2(0) + (0)^2)^{2017}(2 + 2 \times 0) = (2)(2018)(3)^{2018}$.
 - (b) $a_0 + a_1 + a_2 + \ldots + a_{4036} = p(1) = 6^{2018}$
 - (c) $a_0 a_1 + a_2 a_3 + \ldots + a_{4036} = p(-1) = 2^{2018}$
- 2. Firstly, after some trial and error, we arrive at the following diagram.

Let F be the foot of the perpendicular from B to AD.

Let BF = a, AF = b and AB = c.

Let $\angle BAF = \alpha$ and $\angle BEA = \beta$. (With a little angle chasing, it can be shown that the other angles are as in the diagram. Also note that $\triangle ABF \equiv \triangle DCE$.)

Note that $\angle ABE$, $\angle BCE$ and $\angle CED$ are right angles, and that a, b and c are integers, with

$$a^2 + b^2 = c^2$$

We must find the length BC = EF, given that AD = 2009.

From $\triangle ABF$, we can see that $\tan \alpha = \frac{a}{b}$. Similarly, from $\triangle BEF$ we have $\tan \alpha = \frac{EF}{a}$, so $EF = a \tan \alpha = \frac{a^2}{b}$.

Since AD = 2009, we have,

$$2b + \frac{a^2}{b} = 2009$$
$$2b^2 + a^2 = 7^2.41b$$

Seeing that $a^2 + b^2 = c^2$, and that 41, the only prime factor of 2009 congruent to 1 mod(4), can be written uniquely as the sum of two squares, we may re-write this last equation as

$$b^2 + c^2 = 7^2 b(16 + 25).$$

As c is the hypotenuse of $\triangle AFB$, c > b, so we can conclude that $b^2 = 16.7^2 b$ and $c^2 = 25.7^2 b$. Hence $b = 4^2.7^2 = 784$, $c = 5.4.7^2 = 980$, $a = 3.4.7^2 = 588$. (That is, $\triangle ABF$ has sides in the ratio 3:4:5.)

Thus $BC = \frac{a^2}{b} = \frac{3^2 \cdot 4^2 \cdot 7^4}{4^2 \cdot 7^2} = 441.$