MATHEMATICS ENRICHMENT CLUB.
 Solution Sheet 3, May 28, 2018

1. The dimensions of the brick are integers L, W and H with $L+W=9 \mathrm{~cm}$ and $L W H=42 \mathrm{~cm}^{3}$. This implies that $H=42 /(L \times W) \mathrm{cm}$. Only $L=2, W=7$ has $L W$ divide 42 , and so $H=3 \mathrm{~cm}$.
2. A four digit palindromic number x has the form $A B B A$. That is, $x=1001 A+110 B$. Now $1001=7 \times 143$, but $110=11 \times 10$, which is not a multiple of 7 . Consequently, a four-digit palindromic number that is divisible by 7 has the form $A 00 A$ or $A 77 A$, where A can be any of the numbers $1,2, \ldots, 9$. Thus there are 18 such numbers.
3. The internal angles of the parallelogram are 60° and 120°. Using trigonometry, it can be shown that the base of the parallelogram has length $12+4 \sqrt{3} \mathrm{~cm}$ and the side has length $6+4 \sqrt{3} \mathrm{~cm}$. Thus the area is $12(9+5 \sqrt{3})$ square centimetres.

4. (a) Since $a+b+c=2$ and $a+b>c, a+c>b$ and $b+c>a$ each of a, b and c is less than one.
(b)

$$
\begin{aligned}
(1-a)(1-b)(1-c) & >0 \\
1-(a+b+c)+a b+b c+c a-a b c & >0 \\
-1+a b+b c+c a-a b c & >0
\end{aligned}
$$

and

$$
\begin{aligned}
(a+b+c)^{2} & =4 \\
a^{2}+b^{2}+c^{2}+2(a b+b c+c a) & =4 \\
a b+b c+c a & =2-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

Combining the two yields the answer.
5. (a) $x_{0}=0, x_{1}=1, x_{2}=1, x_{3}=3, x_{4}=5, x_{5}=11, x_{6}=21$.
(b) Validate by substituting into the recursive rule $x_{n+1}=x_{n}+2 x_{n-1}$ and confirming that the two initial conditions are satisfied.
(c) Consider the sequence in mod 3 .

Senior Questions

1. Let $p(x)=\left(3+2 x+x^{2}\right)^{2018}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{4036} x^{4036}$.
(a) $a_{0}=p(0)=3^{2018}$ and $a_{1}=p^{\prime}(0)=(2018)\left(3+2(0)+(0)^{2}\right)^{2017}(2+2 \times 0)=$ (2)(2018)(3) ${ }^{2018}$.
(b) $a_{0}+a_{1}+a_{2}+\ldots+a_{4036}=p(1)=6^{2018}$
(c) $a_{0}-a_{1}+a_{2}-a_{3}+\ldots+a_{4036}=p(-1)=2^{2018}$
2. Firstly, after some trial and error, we arrive at the following diagram.

Let F be the foot of the perpendicular from B to $A D$.
Let $B F=a, A F=b$ and $A B=c$.
Let $\angle B A F=\alpha$ and $\angle B E A=\beta$. (With a little angle chasing, it can be shown that the other angles are as in the diagram. Also note that $\triangle A B F \equiv \triangle D C E$.)

Note that $\angle A B E, \angle B C E$ and $\angle C E D$ are right angles, and that a, b and c are integers, with

$$
a^{2}+b^{2}=c^{2} .
$$

We must find the length $B C=E F$, given that $A D=2009$.

From $\triangle A B F$, we can see that $\tan \alpha=\frac{a}{b}$. Similarly, from $\triangle B E F$ we have $\tan \alpha=\frac{E F}{a}$, so $E F=a \tan \alpha=\frac{a^{2}}{b}$.
Since $A D=2009$, we have,

$$
\begin{aligned}
2 b+\frac{a^{2}}{b} & =2009 \\
2 b^{2}+a^{2} & =7^{2} .41 b
\end{aligned}
$$

Seeing that $a^{2}+b^{2}=c^{2}$, and that 41 , the only prime factor of 2009 congruent to 1 $\bmod (4)$, can be written uniquely as the sum of two squares, we may re-write this last equation as

$$
b^{2}+c^{2}=7^{2} b(16+25)
$$

As c is the hypotenuse of $\triangle A F B, c>b$, so we can conclude that $b^{2}=16.7^{2} b$ and $c^{2}=25.7^{2} b$. Hence $b=4^{2} .7^{2}=784, c=5.4 .7^{2}=980, a=3.4 .7^{2}=588$. (That is, $\triangle A B F$ has sides in the ratio $3: 4: 5$.)
Thus $B C=\frac{a^{2}}{b}=\frac{3^{2} \cdot 4^{2} \cdot 7^{4}}{4^{2} \cdot 7^{2}}=441$.

