MATHEMATICS ENRICHMENT CLUB.
 Solution Sheet 4, June 4, 2018

1. Since x is an integer, x^{2} is the product of even powers of 2 and 3 , and hence y^{3} is also a product of even powers of 2 and 3 . Then y^{3} can be $1,2^{6}, 2^{12}, 3^{6}, 3^{12}, 2^{6} \cdot 3^{6}, 2^{6} \cdot 3^{12}$, $2^{12} \cdot 3^{6}$ or $2^{12} \cdot 3^{12}$. For each of these y values, there is one value of x. Hence there are nine solutions altogether.
2. Write $\frac{11}{42}$ as a simple continued fraction. That is,

$$
\begin{aligned}
\frac{11}{42} & =\frac{1}{\frac{42}{11}}=\frac{1}{3+\frac{9}{11}} \\
& =\frac{1}{3+\frac{1}{\frac{11}{9}}}=\frac{1}{3+\frac{1}{1+\frac{2}{9}}} \\
& =\frac{1}{3+\frac{1}{1+\frac{1}{9}}}=\frac{1}{3+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}
\end{aligned}
$$

Then $a+b+c+d=3+1+4+2=10$.
3. We use the method of reflection.

Let A be a point lying inside the angle $X O Y$ and let B and C be points on $O X$ and $O Y$ as shown in the digram. Let D and E be the reflection of the point A in the lines $O X$ and $O Y$, respectively. Then $\triangle A B D$ and $\triangle A C E$ are both isosceles with $A C=C E$ and $A B=B D$. Thus the path from D to E via B and C is equal in length to the perimeter of $\triangle A B C$. Hence this length is minimised when $D B C E$ is a straight line.
4. The sum of the digits $1,2,3, \ldots, 9$ is $45[(1+9)+(2+8)+\ldots+5]$. Also recalling that if we have a sum like $\sum_{k=0}^{n}(a+k)=a(n+1)+\sum_{k=0}^{n} k$, then the required sum is

$$
\begin{aligned}
\sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9} \sum_{d=0}^{9}(a+b+c+d) & =\sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9}\left(10(a+b+c) \sum_{d=0}^{9} d\right) \\
& =\sum_{a=0}^{9} \sum_{b=0}^{9} \sum_{c=0}^{9}(45+10 a+10 b+10 c) \\
& =\sum_{a=0}^{9} \sum_{b=0}^{9}\left(10(45+10 a+10 b)+10 \sum_{c=0}^{9} c\right) \\
& =\sum_{a=0}^{9} \sum_{b=0}^{9}(450+100 a+100 b+450) \\
& =\sum_{a=0}^{9}\left(10(900+100 a)+100 \sum_{b=0}^{9} b\right) \\
& =\sum_{a=0}^{9}(9000+1000 a+4500) \\
& =10 \times 13500+1000 \times 45 \\
& =180000
\end{aligned}
$$

Senior Questions

1. Firstly, we complete the square in a slightly unusual way.

$$
\begin{aligned}
x^{2}-19 x+94 & =x^{2}-20 x+100+x-6 \\
& =(x-10)^{2}+x-6
\end{aligned}
$$

Then $(x-10)^{2}$ is a perfect square whenever x is an integer.
Consider the following diagram

We want to make

$$
(x-10+y)^{2}=x^{2}-20 x+100+x-6,
$$

where x and y are integers. Thus

$$
\begin{aligned}
y^{2}+2(x-10) y & =x-6 \\
y^{2}+2 x y-20 y & =x-6 \\
y^{2}-20 y+6 & =x(1-2 y)
\end{aligned}
$$

So

$$
x=\frac{y^{2}-20 y+6}{1-2 y}
$$

Using polynomial long division, we find that

$$
x=-\frac{y}{2}+\frac{39}{4}-\frac{15}{4}\left(\frac{1}{1-2 y}\right) .
$$

We multiply this by 4 to obtain

$$
4 x=-2 y+39-\frac{15}{1-2 y}
$$

This can be made simpler if we re-write it as

$$
4 x=1-2 y+38-\frac{15}{1-2 y},
$$

and then make the substitution $w=1-2 y$, so then

$$
4 x=w-\frac{15}{w}+38
$$

If we want to have x an integer, then w must be a factor of 15 . Since there are a finite number of integer solutions for $w(\pm 1, \pm 3, \pm 5, \pm 15)$, we simply need to find the one that gives the largest value of x. If we do this, we find that $x=13$.
2. We use the method of reflection again. Let B^{\prime} be the reflection of the point B in the river. Then the length L is equal to the path from A to B^{\prime} via E, which is minimized when $A E B^{\prime}$ is a straight line. In this case, the distance is 15 km (a nice 3-4-5 right triangle).

