MATHEMATICS ENRICHMENT CLUB.
 Solution Sheet 5, June 11, 2018

1. Simplifying $(a+b)^{2}-(a-b)^{2}>29$, we obtain $4 a b>29$. Thus the smallest value of $4 a b$ is 32 , in which case, $a b=8$, and the smallest value of a is 4 .
2. If we substitute $y=x+c$ into $x^{2}+y^{2}=1$, we obtain the quadratic equation

$$
x^{2}+c x+\frac{c^{2}-1}{2}=0
$$

If there is only one solution, we must have $\Delta=0$. Thus

$$
\begin{aligned}
c^{2}-2\left(c^{2}-1\right) & =0 \\
c & = \pm \sqrt{2}
\end{aligned}
$$

3. Let E and F be the midpoints of sides $A C$ and $B C$, as shown in the diagram. Let perpendiculars from E and F intersect at G. Let $D G$ be a perpendicular from G to side $A B$. We need to show that D is also the mid-point of $A B$.
Since $E G$ and $F G$ are the perpendicular bisectors of $A C$ and $B C, A C$ and $B C$ can be considered chords of a circle centred at G. But then $A B$ is also a chord on the same circle, and since $D G$ is a perpendicular from the centre of the circle to the chord, it bisects $A B$. Thus D is the mid
 point of $A B$, as required.
4. Letting $a=\sqrt[3]{5 \sqrt{13}+18}$ and $b=\sqrt[3]{5 \sqrt{13}-18}, x=a-b$ then we find that, after expanding $(a-b)^{3}$

$$
\begin{aligned}
(a-b)^{3} & =a^{2}-3 a^{2} b+3 a b^{2}-b^{3} \\
& =a^{3}-b^{3}-3 a b(a-b)
\end{aligned}
$$

Now $a^{3}-b^{3}=36$ and $a b=1$. Thus

$$
x^{3}=36-3 x,
$$

which has the solution $x=3$.
5. We have $x^{2}-8 x-1001 y^{2}=0$, so

$$
y^{2}=\frac{x(x-8)}{1001}=\frac{x(x-8)}{7 \cdot 11 \cdot 13}
$$

Now $x=0$ and $x=8$ are not permitted.
Checking:
$y=1$: Then $x(x-8)=7 \cdot 11 \cdot 13$, which is not possible.
$y=2$: Then $x(x-8)=4 \times 7 \cdot 11 \cdot 13$, which is also not possible.
$y=3$: Then $x(x-8)=9 \times 7 \cdot 11 \cdot 13=99 \times 91$, so $x=99$ and $y=2$ thus the smallest value of $x+y$ is 102 .

Senior Questions

1. Since $g(-x)=-g(x)$ for all x in the domain, if $x=0$ is in the domain, then

$$
g(-0)=-g(0) .
$$

But $g(-0)=g(0)$, so this is only possible if $g(0)=0$.
2. (a) Use the chain rule and the definition of an even function.
(b) Again, use the chain rule.
3. $f(x)=\frac{1}{2}[h(x)+h(-x)]$ and $g(x)=\frac{1}{2}[h(x)-h(-x)]$.
4. Yes, the zero polynomial, $z(x)=0$, is both odd and even.

