MATHEMATICS ENRICHMENT CLUB. Solution Sheet 6, June 18, 2018

1. Firstly, we note that $2 x+5 y \neq 0$. Then

$$
\begin{aligned}
\frac{x+3 y}{2 x+5 y} & =\frac{4}{7} \\
7(x+3 y) & =4(2 x+5 y) \\
7 x+21 y & =8 x+20 y \\
x & =y
\end{aligned}
$$

The solution is then $x=y \neq 0$.
2. The four digit numbers that satisfy the first equation are $1064,1164,1264$ and so on. Of these, only $1764,3364,8464$ are square. These satisfy the first equation for $n=17$, 33 and 84 respectively. Then $201 \times 84+64=16948$ which is larger than 4 digits, and $201 \times 33+64=6697$ which isn't square. So $n=17$.
3. The solution looks like this:

4. (a) Consider the integers in mod 4. Then it is clear that the only squares in mod 4 are 0 and 1 .
(b) Let the three integers be x, y and z and consider them in mod 4 . An odd integer is congruent to either 1 or $3 \bmod 4$. So if all three integers are odd, we can draw up the following table where all calculations have been carried out in $\bmod 4$:

x	y	z	$x+y$	$x+z$	$y+z$
1	1	1	2	2	2
1	1	3	2	0	0
1	3	3	0	0	2
3	3	3	2	2	2

We know from part (a) that squares are either 0 or $1 \bmod 4$, so none of these combinations works.
Without loss of generality, suppose that x is even but both y and z are odd. Then the table is as follows:

x	y	z	$x+y$	$x+z$	$y+z$
0	1	1	1	1	2
0	1	3	1	3	0
0	3	3	3	3	2
2	1	1	3	3	2
2	1	3	3	1	0
2	3	3	1	1	2

Once again, we see that this does not work if two of the integers are odd. Consequently, at most one of the integers is odd. (It can be seen that $x, y \equiv 0$ and $z \equiv 1$ or $x, y \equiv 2$ and $z \equiv 3 \bmod 4$, for instance, might work.)
(c) Try 19, 30 and 6.
5. Let $K G, L G$ and $G M$ be perpendiculars from G to $A B, A C$ and $B D$, respectively. Then $\triangle B K G$ and $\triangle B G M$ are two right triangles with a smaller angle and a hypotenuse in common, so $\triangle B K G \equiv \triangle B G M$. Thus $G K=G M$. By a similar argument, it can be shown that $G M=G L$. Consequently, $\triangle G A K \equiv \triangle G A L$, and so $G A$ bisects $\angle B A C$, as required.

As you can see from the proof, the points K, L, and M are equidistant from G. Thus G is the centre of a circle that can be drawn inside the triangle and tangent to each side, which is called the inscribed circle.

Senior Questions

1. Use mathematical induction.
2. Recall that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(2 n+1)(n+1)}{6}$. Then $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}=\frac{1}{3}$.
3. (a) The graph should be as follows:

(b) And the graph with the inverse function shown is as follows:

(c) Let $y=W(x)$. Then by definition, $x=y e^{y}$. Differentiating implicitly with respect to x, we have

$$
\begin{aligned}
& 1=\frac{d y}{d x} e^{y}+y e^{y} \frac{d y}{d x} \\
& 1=e^{y}(1+y) \frac{d y}{d x}
\end{aligned}
$$

But $e^{y}=\frac{x}{y}$, and so

$$
\begin{aligned}
1 & =\frac{x(1+y)}{y} \cdot \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{y}{x(1+y)}
\end{aligned}
$$

And since $y=W(x)$, the result follows.

