## MATHEMATICS ENRICHMENT CLUB. <br> Solution Sheet 8, July 2, 2018

1. The digital sum of 13950264876 is 51 . Since $51=17 \times 3$, it is a multiple of three, but it is not a multiple of nine. Thus the prime factorisation of 13950264876 contains 3 , but not $3^{2}$. Thus it cannot be a square.
2. Let the integer we are looking for be $n$ and the common remainder be $r$. Then there are integers $a, b$ and $c$ such that $364=a n+r, 414=b n+r$ and $539=c n+r$. But then $414-364=(b-a) n, 539-414=(c-b) n$ and $539-364=(c-a) n$, so we can see that $n$ divides the differences of the three numbers. Now

$$
\begin{aligned}
& 414-364=50 \\
& 539-414=125 \\
& 539-364=175
\end{aligned}
$$

The largest number that divides all three differences is 25 .
3. We will first show that $\triangle A E F$ is similar to $\triangle A C B$, with a scale factor of $\frac{1}{2}$.


Since $E$ is the midpoint of $A C, A E=\frac{1}{2} A C$. Similarly, $A F=\frac{1}{2} A B$. Furthermore, $\angle A$ is common to both triangles. So $\triangle A E F \sim \triangle A C B$, (ASS), with a scale factor of $\frac{1}{2}$.
As a result, $E F=\frac{1}{2} B C$, and $\angle A E F=\angle A C B$. Thus $E F \| B C$.
4. Since acute angled triangles exist, we know that there are convex polygons with at least three acute angles.
If the interior angle of a polygon is acute, then the exterior angle must be obtuse. The sum of the exterior angles of a convex polygon is $360^{\circ}$. As the sum of four numbers greater than 90 is greater than 360 , a convex polygon must have less than four acute angles. Thus three is the largest number of acute angles that a convex polygon can have.
5. Let $a$ and $b$ be integers such that $a^{3}=x+\sqrt{x^{2}+1}$ and $b^{3}=x-\sqrt{x^{2}+1}$. Then $\sqrt[2]{x+\sqrt{x^{2}+1}}+\sqrt[3]{x-\sqrt{x^{2}+1}}=a+b=y$, where $y \in \mathbb{Z}$. Now

$$
(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)
$$

but

$$
\begin{aligned}
a^{3}+b^{3} & =x+\sqrt{x^{2}+1}+x-\sqrt{x^{2}+1}=2 x \\
a b & =\sqrt[3]{\left(x+\sqrt{x^{2}+1}\right)\left(x-\sqrt{x^{2}+1}\right)} \\
& =\sqrt[3]{x^{2}-\left(x^{2}+1\right)} \\
& =\sqrt[3]{-1}=-1
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
y^{3} & =2 x-3 y \\
\therefore x & =\frac{y^{3}+3 y}{2}, \quad y \in \mathbb{Z} .
\end{aligned}
$$

We can see that $y^{3}$ and $3 y$ have the same parity, and so $x$ is an integer.
6. (a) $\phi(12)=4$ and $\phi(30)=8$.
(b) We can think of $\phi(n)$ as being the number of positive integers less than $n$ which are not a multiple of a factor of $n$ (except the factor 1 ). So if $p$ is prime, its only factors are 1 and $p$. Thus $\phi(p)=p-1$.
For $p^{2}$, the factors are $1, p$ and $p^{2}$, so the multiples of the factors that aren't 1 are $p, 2 p, 3 p, \ldots, p^{2}$, of which there are $p$. So $\phi\left(p^{2}\right)=p^{2}-p=p(p-1)$.
For $p^{3}$, the factors are $1, p, p^{2}$ and $p^{3}$. Multiples of the factors that aren't 1 are $p, 2 p, 3 p, \ldots, p^{2},(p+1) p, \ldots, 2 p^{2}, \ldots, p^{3}$. That is, a total of $p^{2}$ factors. So $\phi\left(p^{3}\right)=p^{3}-p^{2}=p^{2}(p-1)$.
(c) Using the same method as above, the factors of $p q$ are $1, p q$ and $p q$. The multiples of the factors that aren't 1 are $p, 2 p, \ldots, q p$ ( $q$ multiples) and $q, 2 q, \ldots, p q(p$ multiples), but we don't want to count $p q$ twice. So $\phi(p q)=p q-q-p+1=$ $(p-1)(q-1)$.

## Senior Questions

1. (a) Expanding the right hand side,

$$
\begin{aligned}
\left(n^{2}-3 n-1\right)^{2}-25 n^{2} & =n^{4}-2 n^{2}(3 n+1)+(3 n+1)^{2}-25 n^{2} \\
& =n^{4}-6 n^{3}-2 n^{2}+9 n^{2}+6 n+1-25 n^{2} \\
& =n^{4}-6 n^{3}-18 n^{2}+6 n+1
\end{aligned}
$$

(b) We can use the previous result to factorise $n^{4}-6 n^{3}-18 n^{2}+6 n+1$. So

$$
\begin{aligned}
\left(n^{2}-3 n-1\right)^{2}-25 n^{2} & =\left[\left(n^{2}-3 n-1\right)-5 n\right]\left[\left(n^{2}-3 n-1\right)+5 n\right] \\
& =\left(n^{2}-8 n-1\right)\left(n^{2}+2 n-1\right)
\end{aligned}
$$

Now if $n^{4}-6 n^{3}-18 n^{2}+6 n+1$ is prime, then one or the other of these factors must be one. But then either $n^{2}-8 n-2=0$ or $n^{2}+2 n-2=0$, and in both cases, $\Delta$ is not a square number, so there are no integer solutions.
2. From the graph below, we can see there are 7 real roots.


So

$$
\begin{aligned}
f(x) & =x-3 \pi(1-\sin x) \\
f^{\prime}(x) & =3 \pi \cos x+1
\end{aligned}
$$

We should probably use $x_{0}=\frac{\pi}{4}$ as a starting value. Then

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{x_{n}-3 \pi\left(1-\sin x_{n}\right)}{3 \pi \cos x_{n}+1} \\
x_{1} & =1.04309281268308 \\
x_{2} & =1.08468800536226 \\
x_{3} & =1.08600204983348 \\
x_{4} & =1.08600338435583 \\
x_{5} & =1.08600338435721
\end{aligned}
$$

Using the symmetry of the graph, we can estimate that the largest root is

$$
\begin{aligned}
x_{\max } & =\frac{11 \pi}{2}+\left(\frac{\pi}{2}-x_{5}\right) \approx 17.763552537181550 \\
f\left(x_{\max }\right) & =3.55 \times 10^{-15}
\end{aligned}
$$

3. Let $A B C$ be a triangle, and let $D, E$ and $H$ be the midpoints of $B C, A C$ and $A B$, respectively. Suppose that $O$ is the point of intersection of $B E$ and $A D$. Let $F$ and $G$ be the midpoints of $O A$ and $O B$, respectively. Then, applying the mid-line theorem to $\triangle A O B, F G \| A B$, and $F G=\frac{1}{2} A B$. Similarly, by applying the mid-line theorem to $\triangle A C B$, we can see that $E D=\frac{1}{2} A B$ and $E D \| A B$. Thus $D E F G$ is a parallelogram, and $O$ is the point of intersection of its two diagonals. Thus $O D=O F=A F$ and $O E=O G=G B$. Consequently, $O$ is located $\frac{1}{3}$ the way along the medians $A D$ and $B E$ from their respective feet.
By a similar argument, we can show that the point of intersection of the medians CH and $A D$ lies $\frac{1}{3}$ the length of $A D$ away from $D$. Thus the two points of intersection coincide, and the three medians are concurrent.

