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1. The angles in the triangle are, in ascending order 2α, 3α, 4α for some value of α. By
the angle sum of the triangle,

2α + 3α + 4α = 180circ

9α = 180◦

∴ α = 20◦

Thus the largest angle is 80◦.

2. You can work this out on your calculator using the log10 button.

log10(125)100 = 100 log10(125)

= 209.69 . . .

Now we can tell the number of digits of a number n by considering the integer part of
log10(n). If blog10(n)c = k, then n has k + 1 digits, so we can see that 100125 has 210
digits.

3. Applying the triangle inequality to 4AMB, we have

AM < AB +BM

∴ AM < AB +
1

2
BC.
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Similarly, applying the triangle inequality to 4AMC, we have

AM < AC +
1

2
BC.

If we add these two inequalities, we have

2AM < AB +BC + AC.

Thus

AM <
1

2
(AB +BC + AC).

4. We can write α as

α =
1

1 + α

α(1 + α) = 1

α2 + α− 1 = 0

This is just a quadratic in α, so

α =
−1±

√
1− 4(−1)

2

=
−1±

√
5

2
.

Clearly, α > 0, so we take the positive square root, and thus α = −1+
√
5

2
.

5. (a) Recall that gcd(a + mb, b) = gcd(a, b). So if we have gcd(m,n) with m > n and
we divide m by n to get a remainder r, then gcd(m,n) = gcd(n, r). (This idea is
the basis of the Euclidean algorithm.) Thus

250 + 1 = (220 + 1)(230 − 210) + 210 + 1

220 + 1 = (210 + 1)(210 − 1) + 2

210 + 1 = (2)(29) + 1

2 = 2× 1 + 0

Working backwards, we can see that gcd(250 + 1, 220 + 1) = 1.

(b) I think the simplest way to do this is to consider the sum of two nth powers. If
n is an odd number,

xn + yn = (x+ y)(xn−1 − xn−2y + xn−3y2 − . . .+ yn−1)

So if m and n are both odd, then

2m + 1 = (2 + 1)(2m−1 − 2m−2 + 2m−3 − . . .+ 1)

2n + 1 = (2 + 1)(2n−1 − 2n−2 + 2n−3 − . . .+ 1)

We can see clearly that these numbers have a common factor of three. Thus the
common divisor must be a multiple of three.
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Senior Questions

1. We do this by letting the circles ADE and BDF intersect at a point G. We will then
prove that ECFG is a cyclic quadrilateral.
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Join the lines DG, GE and GF . Let ∠ADG = α and ∠BDG = β. Then α and β are
complementary angles.

Since BDGF is a cyclic quadrilateral, ∠BFG = α and so ∠GFC = β. Similarly,
∠AEG = β and thus ∠GEC = α. Thus ∠GEF + ∠GFC = 180◦, which means that
ECFG is a cyclic quadrilateral. Consequently, the points E, C, F and G are concyclic
(that is, they all lie on the same circle).

2. If cos(A+B) + sin(A−B) = 0, then

cosA cosB − sinA sinB + sinA cosB − sinB cosA = 0

cosA(cosB − sinB) + sinA(cosB − sinB) = 0

(cosA+ sinA)(cosB − sinB) = 0

So either cosA+ sinA = 0 or cosB − sinB = 0.
In the first case, tanA = −1, so

A = −π
4

+ kπ =
(4k − 1)π

4
.

In the second case, tanB = 1, hence

B =
π

4
+ kπ =

(4k + 1)π

4
.

To solve cos(nθ) + sin(mθ) = 0, let

A+B = nθ

A−B = mθ
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and solve simultaneously to obtain A =
(n+m)θ

2
and B =

(n−m)θ

2
.

Consequently,

(n+m)θ

2
=

(4k − 1)π

4

θ =
(4k − 1)π

2(n+m)
, if n 6= −m.

Or

(n−m)θ

2
=

(4k + 1)π

4

θ =
(4k + 1)π

2(n−m)
, if n 6= m.
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