MATHEMATICS ENRICHMENT CLUB.
 Solution Sheet 9, July 30, 2018

1. The angles in the triangle are, in ascending order $2 \alpha, 3 \alpha, 4 \alpha$ for some value of α. By the angle sum of the triangle,

$$
\begin{aligned}
2 \alpha+3 \alpha+4 \alpha & =180^{c} i r c \\
9 \alpha & =180^{\circ} \\
\therefore \alpha & =20^{\circ}
\end{aligned}
$$

Thus the largest angle is 80°.
2. You can work this out on your calculator using the $\log _{10}$ button.

$$
\begin{aligned}
\log _{10}(125)^{100} & =100 \log _{10}(125) \\
& =209.69 \ldots
\end{aligned}
$$

Now we can tell the number of digits of a number n by considering the integer part of $\log _{10}(n)$. If $\left\lfloor\log _{10}(n)\right\rfloor=k$, then n has $k+1$ digits, so we can see that 100^{125} has 210 digits.
3. Applying the triangle inequality to $\triangle A M B$, we have

$$
\begin{aligned}
& A M<A B+B M \\
\therefore & A M<A B+\frac{1}{2} B C .
\end{aligned}
$$

Similarly, applying the triangle inequality to $\triangle A M C$, we have

$$
A M<A C+\frac{1}{2} B C
$$

If we add these two inequalities, we have

$$
2 A M<A B+B C+A C
$$

Thus

$$
A M<\frac{1}{2}(A B+B C+A C)
$$

4. We can write α as

$$
\begin{aligned}
\alpha & =\frac{1}{1+\alpha} \\
\alpha(1+\alpha) & =1 \\
\alpha^{2}+\alpha-1 & =0
\end{aligned}
$$

This is just a quadratic in α, so

$$
\begin{aligned}
\alpha & =\frac{-1 \pm \sqrt{1-4(-1)}}{2} \\
& =\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Clearly, $\alpha>0$, so we take the positive square root, and thus $\alpha=\frac{-1+\sqrt{5}}{2}$.
5. (a) Recall that $\operatorname{gcd}(a+m b, b)=\operatorname{gcd}(a, b)$. So if we have $\operatorname{gcd}(m, n)$ with $m>n$ and we divide m by n to get a remainder r, then $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, r)$. (This idea is the basis of the Euclidean algorithm.) Thus

$$
\begin{aligned}
2^{50}+1 & =\left(2^{20}+1\right)\left(2^{30}-2^{10}\right)+2^{10}+1 \\
2^{20}+1 & =\left(2^{10}+1\right)\left(2^{10}-1\right)+\underline{2} \\
2^{10}+1 & =(2)\left(2^{9}\right)+\underline{1} \\
2 & =2 \times 1+\underline{0}
\end{aligned}
$$

Working backwards, we can see that $\operatorname{gcd}\left(2^{50}+1,2^{20}+1\right)=1$.
(b) I think the simplest way to do this is to consider the sum of two nth powers. If n is an odd number,

$$
x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2}-\ldots+y^{n-1}\right)
$$

So if m and n are both odd, then

$$
\begin{aligned}
2^{m}+1 & =(2+1)\left(2^{m-1}-2^{m-2}+2^{m-3}-\ldots+1\right) \\
2^{n}+1 & =(2+1)\left(2^{n-1}-2^{n-2}+2^{n-3}-\ldots+1\right)
\end{aligned}
$$

We can see clearly that these numbers have a common factor of three. Thus the common divisor must be a multiple of three.

Senior Questions

1. We do this by letting the circles $A D E$ and $B D F$ intersect at a point G. We will then prove that $E C F G$ is a cyclic quadrilateral.

Join the lines $D G, G E$ and $G F$. Let $\angle A D G=\alpha$ and $\angle B D G=\beta$. Then α and β are complementary angles.

Since $B D G F$ is a cyclic quadrilateral, $\angle B F G=\alpha$ and so $\angle G F C=\beta$. Similarly, $\angle A E G=\beta$ and thus $\angle G E C=\alpha$. Thus $\angle G E F+\angle G F C=180^{\circ}$, which means that $E C F G$ is a cyclic quadrilateral. Consequently, the points E, C, F and G are concyclic (that is, they all lie on the same circle).
2. If $\cos (A+B)+\sin (A-B)=0$, then

$$
\begin{aligned}
\cos A \cos B-\sin A \sin B+\sin A \cos B-\sin B \cos A & =0 \\
\cos A(\cos B-\sin B)+\sin A(\cos B-\sin B) & =0 \\
(\cos A+\sin A)(\cos B-\sin B) & =0
\end{aligned}
$$

So either $\cos A+\sin A=0$ or $\cos B-\sin B=0$.
In the first case, $\tan A=-1$, so

$$
A=-\frac{\pi}{4}+k \pi=\frac{(4 k-1) \pi}{4}
$$

In the second case, $\tan B=1$, hence

$$
B=\frac{\pi}{4}+k \pi=\frac{(4 k+1) \pi}{4} .
$$

To solve $\cos (n \theta)+\sin (m \theta)=0$, let

$$
\begin{aligned}
& A+B=n \theta \\
& A-B=m \theta
\end{aligned}
$$

and solve simultaneously to obtain $A=\frac{(n+m) \theta}{2}$ and $B=\frac{(n-m) \theta}{2}$.
Consequently,

$$
\begin{aligned}
\frac{(n+m) \theta}{2} & =\frac{(4 k-1) \pi}{4} \\
\theta & =\frac{(4 k-1) \pi}{2(n+m)}, \quad \text { if } n \neq-m .
\end{aligned}
$$

Or

$$
\begin{aligned}
\frac{(n-m) \theta}{2} & =\frac{(4 k+1) \pi}{4} \\
\theta & =\frac{(4 k+1) \pi}{2(n-m)}, \quad \text { if } n \neq m .
\end{aligned}
$$

