Course Staff

Course convener: Dr. Jayashri Ravishankar, Room # 546, Building E10
Email: jayashri.ravishankar@unsw.edu.au

Course websites: OpenLearning https://www.openlearning.com/

Course online facilitators: Aadiya Jain aadiya.jain@student.unsw.edu.au
Asim Qureshi asim.qureshi@unsw.edu.au
Shoaib Akram shoab.akram@unsw.edu.au
Swapneel Thite s.thite@unsw.edu.au

Laboratory demonstrators: Animesh Sahoo a.animesh@unsw.edu.au
Anusuya Arunan a.ananthasingam@unsw.edu.au
Chanditha Karunanayake c.karunanayake@student.unsw.edu.au
Khizir Mahmud khizir.mahmud@unsw.edu.au
Yunqi Wang (Zoey) yunqi.wang@unsw.edu.au

Consultations: You are encouraged to ask questions on the course material, after the face-to-face class times, rather than via email. You are strongly encouraged to use the online discussions in the course website. Lecturer consultation times will only be provided for those students actively involving in online discussions. This applies to email enquiries as well. If you have technical problems in using the new platform, you are welcome to email the online facilitators, who can answer your questions. ALL email enquiries should be made from your student email address with ELEC4612 in the subject line; otherwise they will not be answered.

Keeping Informed: Most announcements will be made via OpenLearning. Please note that you will be deemed to have received this information, so you should take careful note of all announcements.

Course Summary

Contact Hours

The course consists of 3 hours of face-to-face session every week, a 1-hour tutorial every fortnight and a 3-hour laboratory session each fortnight. The tutorial and laboratory sessions commence from week 4. The course is available in the online mode via OpenLearning platform. All topics will be available
online with enough video content and on an interactive mode. You are strongly encouraged to participate in all online modules. The in-class lectures will be replaced by face-to-face mentoring sessions.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Wednesday</td>
<td>1pm - 3pm</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>4pm – 5pm</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Mon - Fri</td>
<td>3 hours</td>
</tr>
<tr>
<td>Tutorials</td>
<td>Thursday</td>
<td>2pm – 3pm</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>3pm – 4pm</td>
</tr>
</tbody>
</table>

Context and Aims

Context: Power systems are complex networks of generators and loads interconnected via transmission lines and various types of equipment and apparatus (transformers, switchgear, etc). An overview of modern power systems meeting present and future challenges involves understanding the fast changing structure of this system, the behaviour of its components under steady state, and dynamic and transient conditions. The course helps with an understanding to evaluate the response of this complex system to variation of loads, and to determine how this system can be controlled to supply the loads reliably, while it is economical and safe to the environment.

Aims: The course will provide students with essential knowledge in the mathematical techniques to analyse power systems, both under steady state and dynamic conditions.

Topics covered comprise: review of the basic concepts used in power system analysis: phasors, complex power, three phase systems and per-unit; application of network matrices techniques and power flow analysis to study the steady-state and dynamic behaviour of power systems; power system fault calculations including: symmetrical components, symmetrical faults, and unsymmetrical faults; power system stability by introduction of swing equation, single-machine-infinite-bus analysis; power system control and economic dispatch.
Indicative Lecture / Tutorial / Laboratory Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Lab exercise</th>
<th>Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 26/2 - 02/3</td>
<td>Overview of power systems engineering, Review of AC power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: 05/3 - 09/3</td>
<td>Three phase systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: 12/3 - 16/3</td>
<td>Representation of power system, Power system modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: 19/3 - 23/3</td>
<td>Ybus matrix building</td>
<td>Lab 1: Introduction to PowerWorld Simulator (E)</td>
<td>Tut 1: 3-phase (E)</td>
</tr>
<tr>
<td>5: 26/3 - 29/4</td>
<td>Gauss-Seidel and Newton-Raphson power flow methods</td>
<td>Lab 1 (O)</td>
<td>Tut 1 (O)</td>
</tr>
<tr>
<td>30/3 – 08/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6: 09/4 - 13/4</td>
<td>Midsession test (11/4)</td>
<td>Lab 2: Power flow analysis (E)</td>
<td>Tut 2: Power Flow (E)</td>
</tr>
<tr>
<td>7: 16/4 - 20/4</td>
<td>Symmetrical Fault Analysis</td>
<td>Lab 2 (O)</td>
<td>Tut 2 (O)</td>
</tr>
<tr>
<td>8: 23/4 - 28/4</td>
<td>Unsymmetrical Fault Analysis</td>
<td>Lab 3: Fault analysis (E)</td>
<td>Tut 3: Faults (E)</td>
</tr>
<tr>
<td>9: 30/4 - 4/5</td>
<td>Power System Stability</td>
<td>Lab 3 (O)</td>
<td>Tut 3 (O)</td>
</tr>
<tr>
<td>10: 7/5 - 11/5</td>
<td>Economic dispatch</td>
<td>Lab 4: Transient stability analysis (E)</td>
<td>Tut 4: Stability (E)</td>
</tr>
<tr>
<td>11: 14/5 -18/5</td>
<td>Power System control</td>
<td>Lab 4 (O)</td>
<td>Tut 4 (O)</td>
</tr>
<tr>
<td>12: 21/5 - 25/5</td>
<td>Revision</td>
<td>Lab 5: Economic dispatch (E)</td>
<td>Tut 5: ED (E)</td>
</tr>
<tr>
<td>13: 28/5 - 1/6</td>
<td>Quiz</td>
<td>Lab 5 (O)</td>
<td>Tut 5 (O)</td>
</tr>
</tbody>
</table>

Assessment

- Laboratory In-class Experiments: 15%
- Project based learning (PBL): 25%
- Mid-Semester Exam: 20%
- Final Exam (2 hours): 40%

Course Details

Credits

This is a 6 UoC course and the expected workload is 10–12 hours per week throughout the 13 week semester.

Relationship to Other Courses

The course is a fourth year professional elective offered to students following a BE (Elec. Eng.) course at UNSW. The course gives the foundations for power system network analysis and design; as such, the course would normally be taken concurrently with thesis work in the energy systems area.
Pre-requisites and Assumed Knowledge
The pre-requisite for the course is ELEC3105, Electrical Energy. It is further assumed that the students have good computer literacy and mathematical skills.

Following Courses
Some of the topics covered in this course are expanded in more details in a post-graduate course ELEC9715, Electricity Industry Operation and Control. This is one of the specialization courses for a Master degree in Engineering Science (Energy Systems).

Learning outcomes
After successful completion of this course, you should be able to:

1. Model major types of components used in electrical power systems.
2. Calculate the steady-state power flow in a power system.
3. Analyse different types of short-circuit faults.
4. Calculate the power system dynamics and its stability.
5. Determine the economic dispatch in a power system.
6. Understand power system control.

This course is designed to provide the above learning outcomes which arise from targeted graduate capabilities listed in Appendix A. The targeted graduate capabilities broadly support the UNSW and Faculty of Engineering graduate capabilities (listed in Appendix B). This course also addresses the Engineers Australia (National Accreditation Body) Stage I competency standard as outlined in Appendix C.

Syllabus
An overview of modern power systems; Review of the basic concepts used in power system analysis: phasors, complex power, three phase systems and per-unit methodology; Modelling circuit of power system components including transformers, generators, transmission lines and loads; Steady state and dynamic behaviour of power systems; Network matrices and power flow analysis; Power system fault calculations: symmetrical components, symmetrical faults, unsymmetrical faults; Power system stability: swing equation; Power system control, economic dispatch.

Teaching Strategies

Delivery Mode
The course consists of the following elements: online activities, in-class discussions, laboratory work, exercise questions, tutorials and project based learning (PBL).

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- In-class discussions, which provide you with a focus on the core analytical material in the course, together with qualitative, alternative explanations to aid your understanding;
- Face-to-face mentoring sessions that will promote group work and enhance deeper learning of the concepts,
- PBL focuses on active, student-directed learning and gives you an authentic, real-world context for learning,
- Tutorials, which allow for exercises in problem solving and allow time for you to resolve problems in understanding of lecture material and PBL activities;
• Laboratory sessions, which support the formal lecture material and also provide you with practical construction, measurement and debugging skills;
• Blended learning activities via online modules that enable active discussions.

Learning in this course
You are expected to attend all face-to-face sessions, tutorials, labs, and mid-semester exams in order to maximise learning. You must prepare well for your laboratory classes and your lab work will be assessed. In addition to the lecture notes/video, you should read relevant sections of the recommended text. Reading additional texts will further enhance your learning experience. Group learning is encouraged and organised during the flipped mode teaching sessions. UNSW assumes that self-directed study of this kind is undertaken in addition to attending face-to-face sessions throughout the course.

Tutorial classes
You should attempt all of your problem sheet questions in advance of attending the tutorial classes. The importance of adequate preparation prior to each tutorial cannot be overemphasised, as the effectiveness and usefulness of the tutorial depends to a large extent on this preparation. Group learning is encouraged. Answers for these questions will be discussed during the tutorial class and the tutor will cover the more complex questions in the tutorial class. In addition, during the tutorial class, 1-2 new questions that are not in your notes may be provided by the tutor, for you to try in class. These questions and solutions may not be made available on the web, so it is worthwhile for you to attend your tutorial classes to gain maximum benefit from this course.

Laboratory program
The laboratory schedule is deliberately designed to provide practical, simulation-based exposure to the concepts conveyed in lectures soon after they are covered in class. You are required to attend laboratory from Week 4 to Week 13. Laboratory attendance WILL be kept, and you MUST attend at least 80% of labs.

Laboratory Exemption
There is no laboratory exemption for this course. Regardless of whether equivalent labs have been completed in previous courses, all students enrolled in this course for Semester 1, 2017 must take the labs. If, for medical reasons, (note that a valid medical certificate must be provided) you are unable to attend a lab, you will need to apply for a catch-up lab during another lab time, as agreed by the laboratory demonstrator.

Assessment
The assessment scheme in this course reflects the intention to assess your learning progress through the semester. Ongoing assessment occurs through the lab checkpoints (see lab manual), PBL and the mid-semester exam.

Laboratory In-class Experiments
Laboratories are primarily about learning, and the laboratory assessment is designed mainly to check your knowledge as you progress through each stage of the laboratory tasks. You are required to maintain a lab book for recording your observations. A lab book is an A4 size notebook containing a mix of plain pages and graph sheets. You can purchase your own lab book from any stores.
It is essential that you complete the laboratory preparation before coming to the lab. You are required to write the aim of the experiment and complete all theoretical calculations. This will be verified and signed by your demonstrators in the lab. You will be recording your observations/readings in your lab book first and then completing and showing the results on the PC screen before leaving the lab.

After completing each experiment, your work will be assessed by the laboratory demonstrator. Both the screen and your lab book will be assessed by the laboratory demonstrator.

Assessment marks will be awarded according to your preparation (completing set preparation exercises and correctness of these or readiness for the lab in terms of pre-reading), how much of the lab you were able to complete, your understanding of the experiments conducted during the lab, and your understanding of the topic covered by the lab.

The laboratory in-class assessment is worth 15% of the marks. There are five lab exercises and each will be contributing to 3% marks towards the course. This means if you are unable to complete any particular lab session, you will miss 3 marks straightaway.

Project Based Learning (PBL)
PBL is introduced in this course for you to gain knowledge and skills by investigating and responding to an engaging challenge in various topics of the course. The students will work in groups of 10. There will be various challenging problems presented to the students on or before the end of Week 3. Note that the allocations for each group would be performed at random. The aim of PBL is to work on the solution to a problem both analytically and via software implementation. There will be pre-Quiz on various topics contributing to 10% towards the course. These quizzes will be setup in Moodle and you will be informed one week prior. The quizzes will aid understanding of the material to implement PBL. The assessment towards the actual problem challenge will be 15% towards the course. This will include a brief report submission which is due 10 May 12 noon and a MCQ quiz on 30/5. Further details will be available in the course website at a later stage. Detailed course material and all lecture videos are available in OpenLearning. To ensure that you use the materials effectively, a mark of 5% is allocated to the progress bar monitor.

Mid-Semester Exam
The mid-session examination tests your general understanding of the course material, and is designed to give you feedback on your progress through the analytical components of the course. Questions may be drawn from any course material up to the end of week 5 (topics include up to power flow analysis). It may contain questions requiring some (not extensive) knowledge of laboratory material, and will definitely contain numerical and analytical questions. Marks will be assigned according to the correctness of the responses. The test is of 75 minute duration, closed-book, held during lecture time in Week 6 Wednesday (11/4). Announcement regarding the test venue and seating arrangements will be available in the course website near to this time. This assessment provides 20% contribution towards your course.

Final Exam
The exam in this course is a standard closed-book 2 hours written examination, covering the aspects of the course from week 6. Note that the material previous to week 6 cannot be completely ignored, although there may not be specific questions from those topics that are already covered in the mid-session exam. A thorough knowledge of these topics is essential to answer the exam questions. The
exam format will be similar to the previous years’ examinations (fully numerical based). The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion.

Please note that you must pass the written exam (final exam + mid-session exam put together) in order to pass the course.

Relationship of Assessment Methods to Learning Outcomes

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory practical assessments</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>PBL</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Mid-semester exam</td>
<td>✓ ✓ - - - -</td>
</tr>
<tr>
<td>Final exam</td>
<td>- - ✓ ✓ ✓ ✓</td>
</tr>
</tbody>
</table>

Course Resources

Textbooks

Prescribed textbook

Reference books

On-line resources

OpenLearning www.openlearning.com
As a part of the teaching component, openLearning platform will be used to disseminate teaching materials and host forums. Assessment marks will also be made available via this platform.

Occasionally Moodle may be used to host quizzes. Information on this will be made available later.
Mailing list
All announcements concerning course information will be available in OpenLearning. They may also be reiterated during the lectures and/or via email (which will be sent to your student email address).

Other Matters

Academic Honesty and Plagiarism
Plagiarism is the unacknowledged use of other people’s work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a form of academic misconduct, and the University has very strict rules that include some severe penalties. For UNSW policies, penalties and information to help you avoid plagiarism, see http://www.lc.unsw.edu.au/plagiarism. To find out if you understand plagiarism correctly, try this short quiz: https://student.unsw.edu.au/plagiarism-quiz.

Student Responsibilities and Conduct
Students are expected to be familiar with and adhere to all UNSW policies (see https://my.unsw.edu.au/student/atoz/ABC.html), and particular attention is drawn to the following:

Workload
It is expected that you will spend at least ten to twelve hours per week studying a 6 UoC course, from Week 1 until the final assessment, including both face-to-face classes and independent, self-directed study. In periods where you need to complete assignments or prepare for examinations, the workload may be greater. Over-commitment has been a common source of failure for many students. You should take the required workload into account when planning how to balance study with employment and other activities.

Attendance
Regular and punctual attendance at all classes is expected. UNSW regulations state that if students attend less than 80% of scheduled classes they may be refused final assessment.

General Conduct and Behaviour
Consideration and respect for the needs of your fellow students and teaching staff is an expectation. Conduct which unduly disrupts or interferes with a class is not acceptable and students may be asked to leave the class.

Work Health and Safety
UNSW policy requires each person to work safely and responsibly, in order to avoid personal injury and to protect the safety of others.

Special Consideration and Supplementary Examinations
You must submit all assignments and attend all examinations scheduled for your course. You should seek assistance early if you suffer illness or misadventure which affects your course progress. All applications for special consideration must be lodged online through myUNSW within 3 working
days of the assessment, not to course or school staff. For more detail, consult https://my.unsw.edu.au/student/atoz/SpecialConsideration.html.

Continual Course Improvement

This course is under constant revision in order to improve the learning outcomes for all students. Please forward any feedback (positive or negative) on the course to the course convener or via myExperience. You can also provide feedback to ELSOC who will raise your concerns at student focus group meetings. As a result of previous feedback obtained for this course and in our efforts to provide a rich and meaningful learning experience, we have continued to evaluate and modify our delivery and assessment methods. The lecture hours have retained at three hours per week similar to last year. PBL has been introduced. Based on the feedback from previous year on blended delivery, this year the face-to-face mentoring sessions are being introduced, to enable active learning and closer interaction within the group via students as partners.

Administrative Matters

On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the School and UNSW policies:

http://www.engineering.unsw.edu.au/electrical-engineering/policies-and-procedures

https://my.unsw.edu.au/student/atoz/ABC.html

Appendix A: Targeted Graduate Capabilities

Electrical Engineering and Telecommunications programs are designed to address the following targeted capabilities which were developed by the school in conjunction with the requirements of professional and industry bodies:

- The ability to apply knowledge of basic science and fundamental technologies;
- The skills to communicate effectively, not only with engineers but also with the wider community;
- The capability to undertake challenging analysis and design problems and find optimal solutions;
- Expertise in decomposing a problem into its constituent parts, and in defining the scope of each part;
- A working knowledge of how to locate required information and use information resources to their maximum advantage;
- Proficiency in developing and implementing project plans, investigating alternative solutions, and critically evaluating differing strategies;
- An understanding of the social, cultural and global responsibilities of the professional engineer;
- The ability to work effectively as an individual or in a team;
- An understanding of professional and ethical responsibilities;
- The ability to engage in lifelong independent and reflective learning.
Appendix B: UNSW Graduate Capabilities

The course delivery methods and course content directly or indirectly addresses a number of core UNSW graduate capabilities, as follows:

- Developing scholars who have a deep understanding of their discipline, through lectures and solution of analytical problems in tutorials and assessed by written examinations.
- Developing rigorous analysis, critique, and reflection, and ability to apply knowledge and skills to solving problems. These will be achieved by the laboratory experiments and interactive checkpoint assessments and lab exams during the labs.
- Developing capable independent and collaborative enquiry, through a series of tutorials spanning the duration of the course.
- Developing ethical practitioners who are collaborative and effective team workers, through group activities, lab work and tutorials.

Appendix C: Engineers Australia (EA) Professional Engineer Competency Standard

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals ✓</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing ✓</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge ✓</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions ✓</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving ✓</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources ✓</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects ✓</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability ✓</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains) ✓</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour ✓</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information ✓</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct ✓</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership ✓</td>
</tr>
</tbody>
</table>