CVEN3701

Environmental Frameworks, Law and Economics

Term One // 2021
Course Overview

Staff Contact Details

Convenors

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tommy Wiedmann</td>
<td>t.wiedmann@unsw.edu.au</td>
<td></td>
<td>Room 312, School of Civil & Environmental Engineering (Building H20)</td>
<td>+61 2 9065 2065</td>
</tr>
</tbody>
</table>

School Contact Information

Engineering Student Support Services – The Nucleus - enrolment, progression checks, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

UNSW Study Abroad – study abroad student enquiries (for inbound students)

UNSW Exchange – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries e.g. admissions, fees, programs, credit transfer

Phone

(+61 2) 9385 8500 – Nucleus Student Hub

(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 – UNSW Study Abroad and UNSW Exchange (for inbound students)
Course Details

Credit Points 6

Summary of the Course

This course builds on the introduction to environmental management in CVEN1701 and provides details of methods for Environmental Impact Statements (EIS) and the ISO14001 Environmental Management System (EMS) framework. It then provides an introduction for engineers on environmental law in Australia and NSW, focusing on planning law, and pollution laws. Environmental economics methods to account for environmental impacts in monetary terms, and the use of market mechanisms to achieve preferred environmental outcomes is covered at a level suitable for engineers.

Course Aims

The aim of this course is to enable students to undertake the preparation of EISs, EMSs and environmental reports, and to be able to have sufficient understanding of environmental law and economics to be able to work with professionals in these areas in order to implement sustainable strategies at corporate and regional levels.

The objectives of the course are to:

- know the standard formats for EISs, EMSs and environmental reports, and to be able to use environmental analytical tools to critically analyse these documents, and be able to manage their preparation.
- acquaint you with the fundamental principles of Australian environmental law; and to explain how these principles are applied to important areas of environmental management and regulation relevant to you in your studies and future career. The course assumes that participants have little or no background in the law, and so the course also provides some basic instruction about important legal concepts and structures. Although NSW is the ‘default’ jurisdiction for this course, the concepts and principles that are discussed are referable to all jurisdictions throughout Australia.
- introduce students in Engineering to the economic way of thinking about environmental issues. This section will begin with some elementary economic tools, and proceed to apply these tools to examine environmental issues. There is no attempt here to justify any particular economic method. If you like, it is a course in how to communicate with economists.

Course Learning Outcomes

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the typical structure and format of an EIS, EMS and environmental report</td>
<td>PE1.1, PE1.6, PE3.1</td>
</tr>
<tr>
<td>2. Use environmental analytical tools to develop an EIS, EMS and environmental report for a project, an organisation and a region</td>
<td>PE1.2, PE2.2, PE3.2, PE3.6</td>
</tr>
<tr>
<td>3. Be familiar with the laws that apply to environmental impacts of projects in NSW and Australia, and be able to brief and</td>
<td>PE1.3, PE3.1, PE3.2</td>
</tr>
</tbody>
</table>
Learning Outcome | EA Stage 1 Competencies
--- | ---
collaborate with environmental lawyers in the preparation of EISs, EMSs and environmental reports | PE1.3, PE3.2, PE3.6, PE3.3, PE3.5

4. Describe environmental economic analytical methods, and be able to critique their application in EISs, EMSs and environmental reports. Be able to brief an environmental economist to work with you in a multidisciplinary team to prepare EISs, EMSs and environmental reports for a range of projects, corporations and regions

Teaching Strategies

Lectures will provide an explanation of procedures to follow to prepare EISs and EMSs and to implement sustainability strategies in these documents by way of environmental law and economics. Examples will be given in these lectures. Students then need to learn these procedures by applying them to real world problems that they have some familiarity with, by way of assignments.

The approaches to learning are:

Lectures
- Find out what you must learn
- Take notes on lecture slides provided to get a full set of reference notes for the course.
- Learn developing environmental laws and economic tools for use in environmental problems; many of these are not well documented in reference books.
- Participate in class discussions and work out example problems in class.
- Ask questions on how the content of lectures applies to assignment questions.

Workshops
- Work actively in small ad hoc groups on problems set in class.
- Be guided by demonstrators, discussion questions and additional reading.
- Participate and attempt all problems and discuss solutions with other students.
- Ask questions on how the content of lectures applies to assignment questions.

Private Study
- Review lecture material, reference books, and resources on UNSW Moodle.
- Work in groups on class assignments.
- Reflect on class problems and assignments.
- Download and work through additional readings provided and prepare for lectures.
- Join Moodle discussions of problems.
- Keep up with notices and find out marks via Moodle

Assessments
- Answer quiz questions in class.
- Demonstrate your knowledge and skills in workshops and assignments.
- Demonstrate ability to work effectively in a group by completing the group assignment.
- Demonstrate higher understanding and problem solving on real world problems in hypothetical, but realistic problem settings in workshops.
- Formative and summative assessment of knowledge and skills in single and group assignments.
- Exams are summative assessments on knowledge gained in the course, particularly as indicated by the ability to quickly undertake exercises set in the Workshop problems.
- Do not copy sections from textbooks or websites, always use appropriate references for sourced material
Additional Course Information

Course context

Prerequisite course and assumed knowledge: CVEN1701

This course builds on the broad multidisciplinary introduction to sustainability provided in the ENGG1000 Engineering Design and Innovation projects, and the range of environmental material accounting, environmental risk assessment, and sustainability assessment tools introduced in CVEN1701 Environmental Principles and Systems. The course will introduce Environmental Impact Statements (EISs), Environmental Management Systems (EMSs) and corporate and regional environmental reporting, each of which uses the tools covered in CVEN1701. The course then goes on to cover environmental law and economics, which can be used to implement sustainable strategies for corporations and regions. The course provides background material for application in the following courses in Year 3 and 4:

- CVEN3502 Water and wastewater engineering
- CVEN3702 Solid wastes and contaminant transport
- CVEN4104 Sustainability in construction
- CVEN4701 Planning sustainable infrastructure

Lecturers

Prof Tommy Wiedmann is a Professor and leader of the Sustainability Assessment Program in the School of Civil and Environmental Engineering at UNSW. He has long-standing expertise in integrated sustainability assessment and environmental footprint analysis. His main research question is how to achieve human wellbeing without increasing environmental impacts. Tommy develops and applies environmental input-output analysis as part of a holistic concept to life cycle assessment, industrial ecology and sustainable consumption and production research.

Prof Gerry Bates has been devising and teaching courses in environmental law for nearly 35 years. He is the author of Environmental Law in Australia, the standard text on the subject; and the founder and Editor in Chief of the Australian Environmental and Planning Law Journal. Dr Bates was formerly a ‘stagiaire’ or trainee of the European Union; and an independent green member of parliament in Tasmania for more than 9 years, returning to the law in 1996. He now works independently as a specialist in environmental law and policy. Professor Bates was a member of the Board of the NSW Environment Protection Authority for more than 12 years between 1998 -2010; and a Director of Kimbriki Environmental Enterprises, a regional waste recovery centre and landfill site on Sydney’s Northern Beaches from 2005-2010. In 1994 he was honoured with the National Environmental Law Association's special award for "Outstanding Contribution to Environmental Law". In 2006 he was nominated for a Vice-Chancellor’s Award for Excellence in Teaching at the Australian National University; and a Carrick Institute Citation for Outstanding Contributions to Student Learning. In 2015 he will be honoured by the Law Council of Australia, Planning and Environment Group, for his contribution to the field of environmental law.

Ms Amy Cheung is a Senior Economist in the NSW government, specialising in economic appraisals and financial appraisals. Her doctoral thesis research was focused on developing a framework in economic theory to analyse the problem of salinity in Australia, and the use of possible market-based policies for its alleviation. Her other research interests include the economics of climate change, waste management, water trading and regulation.
Content

Environmental frameworks component:

- Course overview and briefing on frameworks assignment; a comprehensive review of environmental material accounting tools undertaken in CVEN1701; students who have not taken this first-year elective will be offered additional assistance.
- An outline of the required content and conventional methods for completing an EIS, with illustration from a case study EIS that will be used in the frameworks assignment.
- An outline of ISO14001 EMS, and credibility issues associated with undertaking an EMS.
- An outline of suggested contents of environmental reports for corporations and regions, with critical examination of case studies.

Environmental Law component:

The law part of this Unit is designed to introduce to you, key principles of environmental law and policy that may be of use to you in your future careers as Environmental Engineers.

The course assumes that participants have little or no background in the law, and so the course also provides some basic instruction about important legal concepts and structures. Although NSW is the ‘default’ jurisdiction for this course, the concepts and principles that are discussed are referable to all jurisdictions throughout Australia.

The content of the course concentrates upon those aspects of environmental law that you are most likely to come across in day to day practice as an engineer; requirements for gaining development consent; environmental assessment of projects and activities; pollution control, contaminated sites and waste; enforcement of environmental laws. But first we have to appreciate the nature of the Australian legal system and how it works.

Environmental economics component:

- Economics and the environment – applying basic economic tools to environmental management.
- An economic view on “sustainable development”; Externalities, optimal pollution, cost benefit analysis and environmental valuation.
- Economic instrument of pollution control - “Internalising externalities”. Role of environmental regulation.
- Application of Cost-Benefit Analysis into environmental policy decisions.
- Global externalities: ozone, climate change. Concept of carbon trading.
Assessment

Date for marks returned are two weeks after the due date for all assessments. All assignments will be marked on the basis of whether the student demonstrates an understanding of the material. The assignments are additionally assessed with respect to the depth of the analysis, the breadth of its consideration of the question at hand and the clarity of the way in which the answer is presented. The use of tables and diagrams is encouraged where appropriate. Please make sure you do not exceed the imposed word limits.

Students who perform poorly in the quick quizzes and workshops are recommended to discuss progress with the lecturer during the trimester.

Students must submit their assignments as prescribed by each lecturer. This may involve electronic submission via Turnitin on Moodle or by hard copy as requested by the lecturer. Please ensure all the details on the Assignment cover sheet provided on UNSW Moodle are included in your assignment.

Penalties for late assignments apply! Each lecturer will specify submission procedures and penalties for late assignments at the beginning of their component.

If you are unwell or have other extenuating circumstances which prevent you from completing an assessment, you always have to [apply for Special Consideration before the submission deadline](https://student.unsw.edu.au/special-consideration). Otherwise the fit- to-submit rule applies, i.e. by sitting or submitting an assessment on the scheduled assessment date, the student is declaring that they are fit to do so and cannot later apply for Special Consideration. All requests for extensions and/or special consideration are to be submitted through the Special Consideration portal on MyUNSW (My Student Profile tab > My Student Services > Online Services > Special Consideration). See the following website for further information:

https://student.unsw.edu.au/special-consideration

The Course coordinator reserves the right to adjust the final scores by scaling if agreed to by the Head of School.

Assessment Tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Due Date</th>
<th>Student Learning Outcomes Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment - Critique of an EIS</td>
<td>20%</td>
<td>08/03/2021 08:00 PM</td>
<td>1, 2</td>
</tr>
<tr>
<td>Assignment - Environmental Law</td>
<td>30%</td>
<td>05/04/2021 08:00 PM</td>
<td>3</td>
</tr>
<tr>
<td>Assignment - Ecological Economics</td>
<td>20%</td>
<td>15/04/2021 08:00 PM</td>
<td>4</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>Final Exam period</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>

Assessment Details

Assessment 1: Assignment - Critique of an EIS
Start date: Week 1

Length: 8 pages

Details:

A written critique of a real Environmental Impact Statement (EIS) to demonstrate understanding of ecologically sustainable development (ESD) principles, techniques for environmental impact assessment (EIA) and environmental management systems (EMS). This is an individualised group assignment.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.

Assessment 2: Assignment - Environmental Law

Start date: Week 4

Length: specified by lecturer

Details:

This is an individual assignment (take-home exam) worth 30% of the course mark and is designed to test students' understanding of the fundamental principles of Australian environmental law and how these principles are applied to important areas of environmental management and regulation. The quiz directly relates to the content previously taught in lectures and workshops.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.

Assessment 3: Assignment - Ecological Economics

Start date: Week 7

Length: 3000-3500 words

Details:

This is an individualised group assignment aimed at applying elementary economic methods and tools to an environmental problem and at determining whether decisions about environmental policy should be made on the basis of economic analysis.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.

Assessment 4: Final Exam

Start date: Not Applicable
Length: 2 hours

Details:

Summative assessment on the frameworks and economics part of the course, related to course objectives and learning outcomes. The exam will be a 2-hour open-book exam (plus fifteen minutes reading time) during the normal exam period. There will be three questions to be completed; one on environmental frameworks and two on economics. There will not be any law questions in the exam. The questions will generally be similar to the exercises and questions discussed in workshops and lectures. There are no previous exam papers available.

Additional details:

The Exam date is set by Exams Branch and is confirmed in about Week 8 of session. You can access the time and date of the exam via MyUNSW. Do not make arrangements that will prevent you from doing the exam in the Exam Period, or after the exam date is set in Week 8, on the day of the exam. You are required to be available during all exam dates, including supplementary examinations, should you require one. The final examination is compulsory. A mark of at least 40% in the final examination is required before the class work (quiz and assignments) is included in the final mark.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.
Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

[View class timetable](#)

Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1: 15 February - 19 February</td>
<td>Blended</td>
<td>FRAMEWORKS - Tuesday lecture + workshop (online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course introduction & overview, Sustainable Development Principles, Introduction to Environmental Impact Assessment (EIA)</td>
</tr>
<tr>
<td></td>
<td>Blended</td>
<td>FRAMEWORKS - Thursday lecture + workshop (online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Environmental Impact Statements (EIS), Review of methods and tools from CVEN1701, Assignment 1 Briefing</td>
</tr>
<tr>
<td>Week 2: 22 February - 26 February</td>
<td>Blended</td>
<td>LAW - Tuesday lecture + workshop (face-to-face in CLB 6 and online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part A: Fundamentals of the Australian legal system. Democracy in action; common law, legislation, state/federal responsibilities, property rights, relevant environmental legislation, Land and Environment Court of NSW</td>
</tr>
<tr>
<td></td>
<td>Blended</td>
<td>LAW - Thursday lecture + workshop (face-to-face in CLB 7 and online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part B: Environmental assessment of development. Applications for development consent; major projects and infrastructure; State EIA; Commonwealth EIA; protection of biodiversity</td>
</tr>
<tr>
<td>Week 3: 1 March - 5 March</td>
<td>Blended</td>
<td>FRAMEWORKS - Tuesday lecture + workshop (online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preparation of Environmental Impact Statements (EIS)</td>
</tr>
<tr>
<td></td>
<td>Blended</td>
<td>FRAMEWORKS - Thursday lecture + workshop (online)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Management Systems (EMS), Sustainability reporting</td>
</tr>
</tbody>
</table>
| Week 4: 8 March - 12 March | Blended | LAW - Tuesday lecture + workshop (face-to-face in CLB 6 and online)
Sustainable Development. Origins and meaning of SD; translation into law; practical applications of SD; holding governments accountable for sustainable decision-making
Blended | LAW - Thursday lecture + workshop (face-to-face in CLB 7 and online)
Part A: Pollution control; waste; contaminated sites; climate change |
| Week 5: 15 March - 19 March | Blended | LAW - Tuesday lecture + workshop (face-to-face in CLB 6 and online)
Blended | LAW - Thursday lecture + workshop (face-to-face in CLB 7 and online)
Part A: Revision. Part B: Law Quiz (30%) (open-book exam, 2 hours) |
| Week 6: 22 March - 26 March | Homework | Week 6 is Flexibility Week, i.e. there is no lecture and no workshop. Use the time to work on assignments. |
| Week 7: 29 March - 2 April | Blended | ECONOMICS - Tuesday lecture + workshop (online)
Manage environmental issues with economics
Blended | ECONOMICS - Thursday lecture + workshop (online)
Economic instruments for pollution control 1 |
| Week 8: 5 April - 9 April | Blended | ECONOMICS - Tuesday lecture + workshop (online)
Economic instruments for pollution control 2
Blended | ECONOMICS - Thursday lecture + workshop (online)
Global externalities and mitigation techniques 1 |
| Week 9: 12 April - 16 April | Blended | ECONOMICS - Tuesday lecture + workshop (online)
Global externalities and mitigation techniques 2
Blended | ECONOMICS - Thursday lecture + workshop (online)
Cost Benefit Analysis 1 |
<p>| Week 10: 19 April - 23 | Blended | ECONOMICS - Tuesday lecture + workshop |</p>
<table>
<thead>
<tr>
<th>April</th>
<th>(online)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost Benefit Analysis 2</td>
</tr>
<tr>
<td>Blended</td>
<td>ECONOMICS - Thursday lecture + workshop (online)</td>
</tr>
<tr>
<td></td>
<td>Cost Benefit Analysis 1, examination revision</td>
</tr>
</tbody>
</table>
Resources

Recommended Resources

Textbook

There is no required textbook. The following are recommendations:

Environmental Law:

Accessing the Law – www.austlii.edu.au

Environmental Economics:

There is no required textbook. Students might wish to consult the following textbook in the library for further reading:

An earlier edition of this textbook is available from the open reserve section at the UNSW library (S 333.7/381).

Additional Readings, standards and guideline documents will be provided throughout the lecture series on UNSW Moodle with each lecture.

Course Evaluation and Development
Submission of Assessment Tasks

Please refer to the Moodle page of the course for further guidance on assessment submission.
Academic Honesty and Plagiarism

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person’s work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism
Academic Information

Key UNSW Dates - eg. Census Date, exam dates, last day to drop a course without academic/financial liability etc.

Final Examinations:

Final exams in Term 1 will be held online between 30th April - 13th May inclusive. You are required to be available on these dates. Please do not to make any personal or travel arrangements during this period.

Supplementary Examinations:

Supplementary Examinations for Term 1 2021 will be held on 24th - 28th May inclusive should you be required to sit one. You are required to be available on these dates. Please do not to make any personal or travel arrangements during this period.

ACADEMIC ADVICE

For information about:

- Notes on assessments and plagiarism;
- Special Considerations: student.unsw.edu.au/special-consideration;
- General and Program-specific questions: [The Nucleus: Student Hub](https://nucleus.unsw.edu.au);
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC/SURVSOC/CEPCA

Refer to Academic Advice on the School website available at:

https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-and-forms/academic-advice

Image Credit

Kanimbla Valley (photo taken by T. Wiedmann)

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.
Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

Program Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Knowledge and skill base</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions within the engineering discipline</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline</td>
</tr>
<tr>
<td>PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering application ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2.1 Application of established engineering methods to complex engineering problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professional and personal attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication in professional and lay domains</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>