CVEN9640
Coastal Engineering

Term One // 2021
Course Overview

Staff Contact Details

Convenors

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Turner</td>
<td>ian.turner@unsw.edu.au</td>
<td>email</td>
<td>UNSW Water Research Laboratory, Manly Vale</td>
<td>0280719800</td>
</tr>
</tbody>
</table>

Lecturers

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Turner</td>
<td>ian.turner@unsw.edu.au</td>
<td>email</td>
<td>UNSW Water Research Laboratory, Manly Vale</td>
<td>0280719800</td>
</tr>
<tr>
<td>Kristen Splinter</td>
<td>k.splinter@unsw.edu.au</td>
<td>email</td>
<td>UNSW Water Research Laboratory, Manly Vale</td>
<td>80719845</td>
</tr>
</tbody>
</table>

School Contact Information

Engineering Student Support Services – The Nucleus - enrolment, progression checks, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

UNSW Study Abroad – study abroad student enquiries (for inbound students)

UNSW Exchange – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries e.g. admissions, fees, programs, credit transfer

Phone

(+61 2) 9385 8500 – Nucleus Student Hub

(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 – UNSW Study Abroad and UNSW Exchange (for inbound students)
Course Details

Credit Points 6

Summary of the Course

Waves in coastal waters including theory, measurement, analysis, forecasting, growth, refraction, diffraction, shoaling and breaking processes; coastal and beach processes including tides, storms, currents, elevated water levels, morphology, sediment transport mechanisms, beach erosion and nourishment, longshore transport, prediction and modelling of shoreline change; wave forces on coastal and ocean structures with application to engineering design of harbours, breakwaters, seawalls, piles, decks, marinas, pipelines and outfalls.

Course Aims

This course aims to develop an appreciation of theory of periodic waves in coastal waters, wave growth, refraction, diffraction, shoaling and breaking processes, and to introduce aspects of the measurement, analysis and prediction of waves. Coastal and beach processes are introduced, including tides, storms, currents and elevated water levels, beach morphology, coastal hazards and onshore/alongshore sediment transport. The course will also provide students with theory of wave forces on coastal and ocean structures, with hands-on application to practical engineering design of breakwaters, seawalls, piles, decks, and marinas.

Course Learning Outcomes

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Be familiar with the coastal engineering approach to wave measurement, analysis, growth and propagation from deep to shallow water;</td>
<td>PE1.1, PE1.2, PE1.3, PE2.1</td>
</tr>
<tr>
<td>2. Have gained an understanding of beach morphology, coastal hazards and sediment onshore/offshore transport; and</td>
<td>PE1.6, PE1.4, PE3.1</td>
</tr>
<tr>
<td>3. Developed competence in applying standard coastal engineering approach to calculating wave and current forces on coastal and ocean structures with particular attention to practical performance of breakwaters and seawalls, piles, floating marine units, and solid, slatted or partial depth vertical walls.</td>
<td>PE1.1, PE1.3, PE2.1, PE3.2, PE3.4</td>
</tr>
</tbody>
</table>

Teaching Strategies

Private Study

- Review lecture material and recommended texts
- Do set problems and assignments
- Reflect on class problems and assignments

Weekly Seminars/Workshops
• Find out what you must learn
• Case studies
• Follow worked examples
• Hear announcements on course changes

Practical Exercises

• Practice solving set problems

Online Discussion Forum

• Exchange ideas with peers and ask questions relating to the course and assessments

Assessments
(hand-in assignments, exam)

• Demonstrate your knowledge and skills
• Demonstrate higher understanding and problem solving

Field Trip (optional – recommended)

• Sites inspection, to set studies in context

Additional Course Information

Please note that all lecture and other materials for this course are distributed electronically via Moodle.
Assessment

The three assignments (1 x online/timed quiz; 2 x hand-in reports) provide the opportunity for students to develop and demonstrate their understanding across the 3 main themes of this course: waves, sediment transport and coastal structures.

The open book exam enables students to demonstrate their gained knowledge and understanding across the breadth of materials covered in the course.

Late work will be penalised at the rate of 10% per day after the due time and date have expired. Students who perform poorly in the assignments and practical exercises are recommended to discuss progress with the Lecturer during the Term.

Applying for special consideration: https://student.unsw.edu.au/special-consideration

Note: The Coordinator and/or Lecturer reserves the right to adjust the final scores by scaling if agreed to by the Head of School.

Assessment Tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Due Date</th>
<th>Student Learning Outcomes Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave Theory</td>
<td>10%</td>
<td>Week 3</td>
<td>1</td>
</tr>
<tr>
<td>Sediment Transport</td>
<td>30%</td>
<td>WEEK 7</td>
<td>2</td>
</tr>
<tr>
<td>Breakwater Design</td>
<td>30%</td>
<td>WEEK 10</td>
<td>3</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>During the exam period</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Assessment Details

Assessment 1: Wave Theory

Length: 2-hour online quiz

Details:

This assignment is designed to capture how well the student understands the course material to the use and appropriate application of linear and other wave theories. Marks are given for correct answers and summed up to form an assignment grade. Specific marking criteria are provided with the assignment.

Additional details:

Online quiz in week 3. Available for 24 hrs; one attempt permitted, and once commenced a maximum of 2 hours to complete.

Further details to be provided in Moodle and in weekly seminars/workshops.

Submission notes: Moodle quiz
Assessment 2: Sediment Transport

Length: ~10-page report (pdf)

Details:

This assignment is designed to capture how well the student understands the course material relating to sediment transport processes. Marks are given for correct answers and summed up to form an assignment grade. Specific marking criteria are provided with the assignment.

Submission notes: Due Week 7 – refer assignment sheet that is available in Moodle for further details.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.

Assessment 3: Breakwater Design

Length: ~10 page report (pdf)

Details:

This assignment is designed to capture how well the student understands the course material relating to design of coastal breakwater and revetment structures. Marks are given for correct answers and summed up to form an assignment grade. Specific marking criteria are provided with the assignment.

Submission notes: Due Week 10 – refer assignment sheet that is available in Moodle for further details.

Turnitin setting: This assignment is submitted through Turnitin and students do not see Turnitin similarity reports.

Assessment 4: Final Exam

Start date: Not Applicable

Length: 2 hours

Details:

The final examination is open book, and is designed to capture the students knowledge of the breadth of materials covered in this course. The marks for each individual question are indicated on the exam.

Submission notes: TBA
Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

[View class timetable](#)

Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Week: 8 February - 12 February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1: 15 February - 19 February</td>
<td>Topic: Waves I (Lecturer: Ian Turner)</td>
<td></td>
</tr>
<tr>
<td>Week 2: 22 February - 26 February</td>
<td>Topic: Waves II (Lecturer: Ian Turner)</td>
<td></td>
</tr>
<tr>
<td>Week 3: 1 March - 5 March</td>
<td>Topic: Beaches, Hazards, Climate Change (Lecturer: Ian Turner)</td>
<td>Assessments Due: ASSESSMENT #1 (Online Quiz)</td>
</tr>
<tr>
<td>Week 4: 8 March - 12 March</td>
<td>Topic: Sediment Transport I (Lecturer: Kristen Splinter)</td>
<td></td>
</tr>
<tr>
<td>Week 5: 15 March - 19 March</td>
<td>Topic: Sediment Transport II (Lecturer: Kristen Splinter)</td>
<td></td>
</tr>
<tr>
<td>Week 6: 22 March - 26 March</td>
<td>NO CLASSES THIS WEEK</td>
<td></td>
</tr>
<tr>
<td>Week 7: 29 March - 2 April</td>
<td>Topic: Breakwaters and Revetments I (Lecturer: Ian Turner)</td>
<td>Assessments Due: ASSIGNMENT #2 (pdf Report - Turnitin)</td>
</tr>
<tr>
<td>Week 8: 5 April - 9 April</td>
<td>SITE INSPECTIONS (off campus)</td>
<td></td>
</tr>
<tr>
<td>Week 9: 12 April - 16 April</td>
<td>Topic: Breakwaters and Revetments II (Lecturer: Ian Turner)</td>
<td></td>
</tr>
<tr>
<td>Week 10: 19 April - 23 April</td>
<td>Topic: Coastal/Marine Structures (Lecturer: Kristen Splinter)</td>
<td>Assessments Due: ASSIGNMENT #3 (pdf Report - Turnitin)</td>
</tr>
</tbody>
</table>
Resources

Prescribed Resources

Specific course resources and references will be provided during the Term.

Recommended Resources

The following texts are recommended as generally useful:

- Coastal Engineering Manual (CEM) – download individual chapters for free at (use the search term: ‘coastal’):

Course Evaluation and Development

Course evaluation will be sought from all students through myExperience. This is used to continually improve the outcomes and experience for students.

Laboratory Workshop Information

This seminar/workshop course will be delivered live and in the classroom each week. For students in the Distance mode of course delivery, weekly recordings will be made available via Moodle, and all students are encouraged to use the online Discussion Forum to ask questions and exchange information and ideas.
Submission of Assessment Tasks

Please refer to the Moodle page of the course for further guidance on assessment submission.
Academic Honesty and Plagiarism

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise are also liable to disciplinary action, including exclusion from enrolment.

Plagiarism is the use of another person’s work or ideas as if they were your own. When it is necessary or desirable to use other people’s material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism
Academic Information

Key UNSW Dates - eg. Census Date, exam dates, last day to drop a course without academic/financial liability etc.

Final Examinations:

Final exams in Term 1 will be held online between 30th April - 13th May inclusive. You are required to be available on these dates. Please do not to make any personal or travel arrangements during this period.

Supplementary Examinations:

Supplementary Examinations for Term 1 2021 will be held on 24th - 28th May inclusive should you be required to sit one. You are required to be available on these dates. Please do not to make any personal or travel arrangements during this period.

ACADEMIC ADVICE

For information about:

- Notes on assessments and plagiarism;
- Special Considerations: student.unsw.edu.au/special-consideration;
- General and Program-specific questions: The Nucleus: Student Hub
- Year Managers and Grievance Officer of Teaching and Learning Committee, and
- CEVSOC/SURVSOC/CEPCA

Refer to Academic Advice on the School website available at:

https://www.engineering.unsw.edu.au/civil-engineering/student-resources/policies-procedures-and-forms/academic-advice

Image Credit

Photo Credit: Ian Turner

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.
Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

Program Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Knowledge and skill base</th>
<th>✔</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions within the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline</td>
<td>✔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering application ability</th>
<th>✔</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2.1 Application of established engineering methods to complex engineering problem solving</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
<td></td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
<td></td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professional and personal attributes</th>
<th>✔</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication in professional and lay domains</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
<td></td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
<td></td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
<td></td>
</tr>
</tbody>
</table>