MANF3510
Process Technology and Automation

Term Two // 2021
Course Overview

Staff Contact Details

Convenors

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Erik van Voorthuysen</td>
<td>erikv@unsw.edu.au</td>
<td>Immediately after tutorials, on Moodle, Teams and by appointment</td>
<td>ME507</td>
<td>9385 4147</td>
</tr>
</tbody>
</table>

Lecturers

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Ron Chan</td>
<td>r.chan@unsw.edu.au</td>
<td>Immediately after tutorials, on Moodle, Teams and by appointment</td>
<td>ME507</td>
<td>9385 5135</td>
</tr>
</tbody>
</table>

School Contact Information

Location

UNSW Mechanical and Manufacturing Engineering

Ainsworth building J17, Level 1

Above Coffee on Campus

Hours

9:00–5:00pm, Monday–Friday*

*Closed on public holidays, School scheduled events and University Shutdown

Web

School of Mechanical and Manufacturing Engineering

Engineering Student Support Services

Engineering Industrial Training

UNSW Study Abroad and Exchange (for inbound students)

UNSW Future Students

Phone

(+61 2) 9385 8500 – Nucleus Student Hub
(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 – UNSW Study Abroad and UNSW Exchange (for inbound students)

(+61 2) 9385 4097 – School Office**

**Please note that the School Office will not know when/if your course convenor is on campus or available

Email

Engineering Student Support Services – current student enquiries

- e.g. enrolment, progression, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

UNSW Study Abroad – study abroad student enquiries (for inbound students)

UNSW Exchange – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries

- e.g. admissions, fees, programs, credit transfer

School Office – School general office administration enquiries

- NB: the relevant teams listed above must be contacted for all student enquiries. The School will only be able to refer students on to the relevant team if contacted
Course Details

Credit Points 6

Summary of the Course

Key factors for success in modern manufacturing include quality, productivity, efficiency, flexibility, agility, and customer satisfaction all while maintaining control over cost. Depending on the characteristics of the product and its market, an appropriate manufacturing process needs to be designed. This course is closely aligned with the characteristics and requirements of small to medium scale manufacturing, entrepreneurial start-ups and prototyping.

MANF3510 builds on knowledge gained in MMAN2130(1130) Design and Manufacturing and DESN2000 Engineering Design, where the aim is to develop a design or prototype into a product that can be successfully manufactured. MANF3510 takes this concept to the next stage through teaching you how to design a manufacturing process by specifying, selecting and integrating the basic building blocks of process technology and automation into a successful manufacturing process or machine. The course contains appropriate theory and also focuses on the required practical knowledge to be able to put this theory into practice.

This course focuses on manufacturing technology as well as the main building blocks of industrial automation including materials handling technologies and actuation technologies such as pneumatics, electric motors, solenoids, switches, programmable logic controllers, CNC technology and industrial robotics. The aim of the course is to build understanding of the behaviour and specify the appropriate level of process technology and automation aligned with a specific product design.

The course aims to develop you into a skilled and all-rounded process design engineer able to carry out and manage the key design processes in parallel and concurrently. Design is inherently complex and a systematic, yet flexible, agile and interdisciplinary approach is required to bring product to the market successfully and in less time, using appropriate technology.

Course Aims

Key factors for success in modern manufacturing include quality, productivity, efficiency, flexibility, customer satisfaction and control over cost and logistics. Depending on the characteristics of the product and its market, an appropriate manufacturing system and key enabling technologies (such as automation) need to be selected. This course deals with common manufacturing processes and technologies, the control of these processes as well as materials handling and robotics. This course includes a substantial amount of laboratory work.

The course covers the basic technology and elements used to design computerised and automated manufacturing systems. It deals with the principles of numerically controlled machine tools and their elements, from basic machines to the level of sophisticated turning and machining centers. It then covers in more detail, assisted by tutorial work, the procedure of CNC programming, industrial robots and their programming and programmable logic controllers (PLC).

Topics include: Function and control of CNC machine tools; Sensors and actuators in automated systems; Programming of CNC machine tools and PLCs; Design and classification of industrial robots; Programmable logic controllers.
Course Learning Outcomes

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply systematic design principles as part of designing automated industrial machines and processes</td>
<td>PE1.1, PE1.5, PE2.1, PE2.3</td>
</tr>
<tr>
<td>2. Use appropriate CAD/CAM and CNC technology to design a component and generate the CNC code to manufacture that component using CNC and/or 3D rapid prototyping manufacturing technology</td>
<td>PE1.3, PE2.2, PE2.3, PE3.4</td>
</tr>
<tr>
<td>3. Assess performance and characteristics of major machine elements and building blocks, including robotics, and specify and select appropriate equipment items from suppliers</td>
<td>PE1.1, PE1.3</td>
</tr>
<tr>
<td>4. Write and execute ladder programming for off the shell programmable logic controllers</td>
<td>PE1.3, PE2.2, PE2.3, PE3.4</td>
</tr>
</tbody>
</table>

Teaching Strategies

The course material will be presented in the form of lectures and associated book chapters and readings. Understanding will be supplemented by practical assignments and projects. Deeper understanding will be achieved during formal tutorial/lab sessions where students work with tutors and lecturer to implement theory on assigned problems and cases using a PLC programming environment, ABB RobotStudio and CNC controllers. The examinations will test the understanding of basic theory.
Assessment

Assessment Tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Due Date</th>
<th>Student Learning Outcomes Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>20%</td>
<td>25/06/2021 03:00 PM</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Final exam</td>
<td>40%</td>
<td>During Exam Period</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Group assignment</td>
<td>40%</td>
<td>06/08/2021 05:00 PM</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>

Assessment Details

Assessment 1: Quizzes

Start date: 25/06/2021 03:00 PM

Length: Each quiz will be of 1 hour duration

Details:

There will be two quizzes dealing with material from weeks 1-3 (held in week 4) and weeks 4-9 (held in week 10). Quizzes will be online and will be held during scheduled tutorial/lab times. Marks will be returned within two weeks from the date of the quiz.

Submission notes: Quizzes will be held online

Turnitin setting: This is not a Turnitin assignment

Assessment 2: Final exam

Start date: During Exam Period

Length: 2 hours

Details: There will be a two-hour final exam covering all material taught in the course from weeks 1-10. The exam will be online and held during the formal examination period set by UNSW.

Turnitin setting: This is not a Turnitin assignment

Assessment 3: Group assignment

Start date: 02/07/2021 05:24 PM

Length: Maximum of 5 pages

Details:
Group Assignment 1 deals with the design of a PLC program and the demonstration that this program works. More details will be posted on Moodle.

Group Assignment 2 deals with designing a CNC program and demonstrating that it works. More details will be posted on Moodle.

Assignment 1 will be due at the end of Week 7 and Assignment 2 is due at the end of Week 10.

Assignments will require an in-person Viva Examination as well as a written report not exceeding 5 pages each. Marks will be returned within two weeks from the date of submission.

Unless special consideration has been applied for and an extension has been granted, marks will be lost each business day at the rate of 20% per day, leading to an absolute fail after day 5.

Submission notes: Each assignment will be submitted on Moodle and a tab will be created in the relevant week.

Turnitin setting: This is not a Turnitin assignment
Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

View class timetable

Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Week: 25 May - 28 May</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 2: Computer Hardware, Controllers, Sensors, Binary Theory</td>
</tr>
<tr>
<td>Week 2: 7 June - 11 June</td>
<td>Lecture</td>
<td>Programmable Logic Controllers (PLC) – Part 1, Boolean Logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tut-Lab Install Omron Software. PLC basics.</td>
</tr>
<tr>
<td>Week 3: 14 June - 18 June</td>
<td>Lecture</td>
<td>Programmable Logic Controllers (PLC) – Part 2</td>
</tr>
<tr>
<td>Week 4: 21 June - 25 June</td>
<td>Lecture</td>
<td>Machine and Systems Design and Analysis, Machining Variables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tut-Lab Assignment Part 1 Support</td>
</tr>
<tr>
<td>Week 5: 28 June - 2 July</td>
<td>Lecture</td>
<td>Industrial Robotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tut-Lab Assignment Support</td>
</tr>
<tr>
<td>Week 6: 5 July - 9 July</td>
<td></td>
<td>Week 6 is a flexibility week and a tutorial will be offered to support the completion of Assignment Part 1.</td>
</tr>
<tr>
<td>Week 7: 12 July - 16 July</td>
<td>Lecture</td>
<td>Costing Methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pneumatic Systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial Assignment Part 1 support. Questions on Robotics and Machine Variables</td>
</tr>
<tr>
<td>Week 8: 19 July - 23 July</td>
<td>Lecture</td>
<td>Introduction to Computer Aided Manufacturing - Part 1 - concepts of computer numerical control (CNC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tut-Lab Introduction to Assignment Part 2</td>
</tr>
<tr>
<td>Week 9: 26 July - 30 July</td>
<td>Lecture</td>
<td>Introduction to Computer Aided Manufacturing - Part 2: CAM Software Systems (Fusion 360) and Hardware (Denford CNC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tut-Lab Assignment Part 2 Support</td>
</tr>
<tr>
<td>Week 10: 2 August - 6 August</td>
<td>Lecture</td>
<td>Introduction to Computer Aided Manufacturing - Part 3: Analysis of Manufacturing Performance and Costing using CAM, Simulation and Analytical</td>
</tr>
<tr>
<td>Costing Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tut-Lab</td>
<td>Assignment Part 2 support</td>
<td></td>
</tr>
</tbody>
</table>
Resources

Prescribed Resources

Lecture notes and recorded videos for all topics will be posted on Moodle. For all e-Books and reference books please visit the UNSW Library website: https://www.library.unsw.edu.au/

Textbooks

This textbook is available through the bookstore at UNSW and a copy will be put into the ‘High-Use Collection’ section of our library.

Reference books

UNSW Library website: https://www.library.unsw.edu.au/

Recommended Resources

Not available

Course Evaluation and Development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the
course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include a more streamlined CNC assignment and a recently redesigned PLC "machine-on-a-board" test rig.
Submission of Assessment Tasks

Assessment submission and marking criteria

Should the course have any non-electronic assessment submission, these should have a standard School cover sheet.

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Late policy

Work submitted late without an approved extension by the course coordinator or delegated authority is subject to a late penalty of 20 percent (20%) of the maximum mark possible for that assessment item, per calendar day.

The late penalty is applied per calendar day (including weekends and public holidays) that the assessment is overdue. There is no pro-rata of the late penalty for submissions made part way through a day.

Work submitted after the ‘deadline for absolute fail’ is not accepted and a mark of zero will be awarded for that assessment item.

For some assessment items, a late penalty may not be appropriate. These are clearly indicated in the course outline, and such assessments receive a mark of zero if not completed by the specified date. Examples include:

1. Weekly online tests or laboratory work worth a small proportion of the subject mark, or
2. Online quizzes where answers are released to students on completion, or
3. Professional assessment tasks, where the intention is to create an authentic assessment that has an absolute submission date, or
4. Pass/Fail assessment tasks.

Examinations

You must be available for all quizzes, tests and examinations. For courses that have final examinations, these are held during the University examination periods: February for Summer Term, May for T1, August for T2, and November/December for T3.

Please visit myUNSW for Provisional Examination timetable publish dates. For further information on exams, please see the Exams webpage.

Special Consideration

If you have experienced an illness or misadventure beyond your control that will interfere with your
assessment performance, you are eligible to apply for Special Consideration prior to submitting an assessment or sitting an exam.

UNSW now has a Fit to Sit / Submit rule, which means that if you attempt an exam or submit a piece of assessment, you are declaring yourself fit enough to do so and cannot later apply for Special Consideration.

For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW’s Special Consideration page.

Please note that students will not be required to provide any documentary evidence to support absences from any classes missed because of COVID-19 public health measures such as isolation. UNSW will not be insisting on medical certificates from anyone deemed to be a positive case, or when they have recovered. Such certificates are difficult to obtain and put an unnecessary strain on students and medical staff.

Applications for special consideration will be required for assessment and participation absences – but no documentary evidence for COVID-19 illness or isolation will be required.
Academic Honesty and Plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. **Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.**

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism, visit: student.unsw.edu.au/plagiarism. The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf
Academic Information

Credit points

Course credit is calculated in Units-Of-Credit (UOC). The normal workload expectation for one UOC is approximately 25 hours per term. This includes class contact hours, private study, other learning activities, preparation and time spent on all assessable work.

Most coursework courses at UNSW are 6 UOC and involve an estimated 150 hours to complete, for both regular and intensive terms. Each course includes a prescribed number of hours per week (h/w) of scheduled face-to-face and/or online contact. Any additional time beyond the prescribed contact hours should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

On-campus class attendance

Public distancing conditions must be followed for all face-to-face classes. To ensure this, only students enrolled in those classes will be allowed in the room. No over-enrolment is allowed in face-to-face classes. Students enrolled in online classes can swap their enrolment from online to a limited number of on-campus classes by Sunday, Week 1. Please refer to your course's Microsoft Teams and Moodle sites for more information about class attendance for in-person and online class sections/activities.

Your health and the health of those in your class is critically important. You must stay at home if you are sick or have been advised to self-isolate by NSW health or government authorities. Current alerts and a list of hotspots can be found here. You will not be penalised for missing a face-to-face activity due to illness or a requirement to self-isolate. We will work with you to ensure continuity of learning during your isolation and have plans in place for you to catch up on any content or learning activities you may miss. Where this might not be possible, an application for fee remission may be discussed. Further information is available on any course Moodle or Teams site.

In certain classroom and laboratory situations where physical distancing cannot be maintained or there is a high risk that it cannot be maintained, face masks will be considered mandatory PPE for students and staff.

For more information, please refer to the FAQs: https://www.covid-19.unsw.edu.au/safe-return-campus-faqs

Guidelines

All students are expected to read and be familiar with UNSW guidelines and polices. In particular, students should be familiar with the following:

- Attendance
- UNSW Email Address
- Special Consideration
- Exams
- Approved Calculators
- Academic Honesty and Plagiarism

Important Links
• Moodle
• Lab Access
• Computing Facilities
• Student Resources
• Course Outlines
• Faculty Transitional Arrangements for COVID-19
• Makerspace
• UNSW Timetable
• UNSW Handbook
• Equitable Learning Services

Image Credit
Synergies in Sound 2016

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.
Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and skill base</td>
<td></td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline</td>
<td></td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions within the engineering discipline</td>
<td></td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline</td>
<td></td>
</tr>
<tr>
<td>Engineering application ability</td>
<td></td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex engineering problem solving</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
<td></td>
</tr>
<tr>
<td>Professional and personal attributes</td>
<td></td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
<td></td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication in professional and lay domains</td>
<td></td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
<td></td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
<td></td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
<td></td>
</tr>
</tbody>
</table>