MANF4430
Reliability and Maintenance Engineering

Term One // 2021
Course Overview

Staff Contact Details

Convenors

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron Chan</td>
<td>r.chan@unsw.edu.au</td>
<td>Consultation concerning this course is available immediately after the classes. Direct consultation is preferred.</td>
<td>Room ME507, Ainsworth Building</td>
<td>9385 1535</td>
</tr>
</tbody>
</table>

Lecturers

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erik van Voorthuysen</td>
<td>erikv@unsw.edu.au</td>
<td>Consultation concerning this course is available immediately after the classes. Direct consultation is preferred.</td>
<td>ME507, Ainsworth Building</td>
<td>9385 4147</td>
</tr>
</tbody>
</table>

School Contact Information

Location

UNSW Mechanical and Manufacturing Engineering
Ainsworth building J17, Level 1
Above Coffee on Campus

Hours

9:00–5:00pm, Monday–Friday*

*Closed on public holidays, School scheduled events and University Shutdown

Web

School of Mechanical and Manufacturing Engineering
Engineering Student Support Services
Engineering Industrial Training
UNSW Study Abroad and Exchange (for inbound students)
UNSW Future Students

Phone

(+61 2) 9385 8500 – Nucleus Student Hub

(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 – UNSW Study Abroad and UNSW Exchange (for inbound students)

(+61 2) 9385 4097 – School Office**

Please note that the School Office will not know when/if your course convenor is on campus or available

Email

Engineering Student Support Services – current student enquiries

- e.g. enrolment, progression, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

UNSW Study Abroad – study abroad student enquiries (for inbound students)

UNSW Exchange – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries

- e.g. admissions, fees, programs, credit transfer

School Office – School general office administration enquiries

- NB: the relevant teams listed above must be contacted for all student enquiries
Course Details

Credit Points 6

Summary of the Course

The course will introduce statistics, mathematics and associated techniques for analyzing an industrial process for the purpose of maintaining and improving it. Major disciplines covered include sensor hardware, data collection, data analysis including statistical process control, 6-sigma analysis and decision-making. The course focuses on developing experimental techniques using statistical methods to test the performance of the processes in a manufacturing industry. It lays the foundations for testing products, components, machinery and processes. This is necessary for the development of quality products. This leads to the development of quality assurance methods for products as well as the development and understanding of the reliability of the processes on the shop-floor. This is necessary to maintain maximum up-time and return-on-assets for a manufacturing facility.

Course Aims

This course aims to develop the concept of data gathering, analysis and modeling using statistical methods. In attempting to determine if the processes or products are meeting set criteria the manufacturing engineer has to carry out tests that will enable him or her to make a judgment with a certain level of confidence.

The fundamental aim of the course is to present a comprehensive overview of methodologies and analyses in the fields of process improvement and reliability / maintenance engineering.

Reliability and maintenance management by definition are a collection of tools and methodologies to achieve machinery and process integrity and performance. One of the main foundations of reliability and maintenance engineering is that it is a top-down bottom-up driven strategy, regardless of the specific reliability and maintenance philosophies adopted. The aim is to provide students with a comprehensive overview of process improvement and maintenance strategies, methodologies and analytical foundations that form part of this important field.

The challenge for process improvement and maintenance engineering is to develop the most effective and at the same time efficient strategy for managing the performance, capability and condition of plant & equipment so as to meet or exceed commercial and operational requirements.

Course Learning Outcomes

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the different statistical methods available for analysis of different processes</td>
<td>PE1.1, PE1.2, PE1.3</td>
</tr>
<tr>
<td>2. Understand the importance of the maintenance and process improvement functions within industry</td>
<td>PE2.1, PE2.2, PE2.3</td>
</tr>
</tbody>
</table>
Learning Outcome

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Understand the various methodologies used in industry to estimate the level of</td>
<td>PE1.2, PE2.1, PE2.2</td>
</tr>
<tr>
<td>reliability and remaining life of a critical component and system at a certain</td>
<td></td>
</tr>
<tr>
<td>point in time, using statistical and mathematical techniques where appropriate</td>
<td></td>
</tr>
<tr>
<td>4. Conduct reliability studies and make recommendations with respect to the</td>
<td>PE3.1, PE3.4, PE3.6</td>
</tr>
<tr>
<td>maintenance plan and ongoing reliability program</td>
<td></td>
</tr>
</tbody>
</table>

Teaching Strategies

The course material will be presented in the form of lectures and associated book chapters and readings. Understanding will be supplemented by case studies and examples discussed in class. Deeper understanding will be achieved during formal tutorial/lab sessions where students work with tutors and lecturer to implement theory on assigned problems and assignment case studies using Microsoft Excel and Minitab. Four (4) quizzes will test students their understanding of basic theory.
Assessment

Assessment Tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Due Date</th>
<th>Student Learning Outcomes Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz x 4</td>
<td>40%</td>
<td>Week 3, 5, 8, 10</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Assignment x 2</td>
<td>60%</td>
<td>Week 7 and 10</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Assessment Details

Assessment 1: Quiz x 4

Start date: Not Applicable

Details: All quizzes will be conducted fully online using the Moodle Quiz function.

Additional details:

Students must demonstrate understanding of the theory of reliability, both at the component as well as the system level. A minimum mark of 45% must be obtained for the combined marks of all 4 quizzes in order to pass this subject. Failure to achieve this minimum mark will result in an unsatisfactory fail (UF) grade, regardless of the performance in the rest of the course.

Assessment 2: Assignment x 2

Length: 2000 words

Details: The assignment instructions will be posted on Moodle/Teams, and a reminder announcement will be made about due date for the assignments. The assignments support the learning outcomes by incorporating an appropriate mix of activities such as issue analysis and fact-based data analysis that support the design of appropriate solutions and strategies. The assignments also support collaborative teamwork and integration of different ideas and components into an overall coherent quality management strategy.
Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

[View class timetable](#)

Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Week: 8 February - 12 February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1: 15 February - 19 February</td>
<td>Lecture</td>
<td>Issue analysis and data visualisation techniques.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sahay, Data visualization. Volume 1, recent trends and applications using conventional and big data, 1st ed, Chapter 1 to 6</td>
</tr>
<tr>
<td>Week 2: 22 February - 26 February</td>
<td>Lecture</td>
<td>Statistical Hypothesis testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montgomery, Design and analysis of experiments, 8th ed, Chapter 2</td>
</tr>
<tr>
<td>Week 3: 1 March - 5 March</td>
<td>Lecture</td>
<td>Linear Regression Analysis Part 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montgomery, Introduction to linear regression analysis, 5th ed, Chapter 2, 3 and 4</td>
</tr>
<tr>
<td>Week 4: 8 March - 12 March</td>
<td>Lecture</td>
<td>Linear Regression Analysis Part 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montgomery, Introduction to linear regression analysis, 5th ed, Chapter 5 and 6</td>
</tr>
<tr>
<td>Week 5: 15 March - 19 March</td>
<td>Lecture</td>
<td>Introduction to Probability theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ogunnaike, Random phenomena: fundamentals of probability and statistics for engineers, Chapter 3</td>
</tr>
<tr>
<td>Week 6: 22 March - 26 March</td>
<td>Lecture</td>
<td>Component reliability and Weibull analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modarres, Reliability engineering and risk analysis : a practical guide, Chapter 1, 2 and 3</td>
</tr>
<tr>
<td>Week 7: 29 March - 2 April</td>
<td>Lecture</td>
<td>System reliability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modarres, Reliability engineering and risk analysis : a practical guide, Chapter 4</td>
</tr>
<tr>
<td>Week 8: 5 April - 9 April</td>
<td>Lecture</td>
<td>Condition Monitoring and Physical Degradation Models</td>
</tr>
<tr>
<td>Week 9: 12 April - 16 April</td>
<td>Lecture</td>
<td>Maintenance Theory</td>
</tr>
<tr>
<td>Week 10: 19 April - 23 April</td>
<td>Lecture</td>
<td>Technical Process Identification, Characterisation and Modeling</td>
</tr>
</tbody>
</table>
Resources

Prescribed Resources

• Babatunde A. Ogunnaike, Random phenomena: fundamentals of probability and statistics for engineers, CRC Press, 9950845363701731
• Douglas C. Montgomery, Design and analysis of experiments, 8th ed, Hoboken, N.J.: John Wiley & Sons, Inc., 1118146921
• Mohammad. Modarres, Reliability engineering and risk analysis: a practical guide, 2nd ed, Hoboken, CRC Press, 9950728008301731
• Sahay Amar, Data visualization. Volume 1, Recent trends and applications using conventional and big data, 1st ed, Business Expert Press, 9950811769301731

You can find a free e-copy of the textbook from the UNSW library.

Recommended Resources

Course Evaluation and Development

In this course, recent improvements resulting from student feedback include the continuous use of VIVA assessment as it received positive feedback when the course was revised in 2019.
Submission of Assessment Tasks

Assessment submission and marking criteria

Should the course have any non-electronic assessment submission, these should have a standard School cover sheet.

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Late policy

Work submitted late without an approved extension by the course coordinator or delegated authority is subject to a late penalty of 20 percent (20%) of the maximum mark possible for that assessment item, per calendar day.

The late penalty is applied per calendar day (including weekends and public holidays) that the assessment is overdue. There is no pro-rata of the late penalty for submissions made part way through a day.

Work submitted after the ‘deadline for absolute fail’ is not accepted and a mark of zero will be awarded for that assessment item.

For some assessment items, a late penalty may not be appropriate. These are clearly indicated in the course outline, and such assessments receive a mark of zero if not completed by the specified date. Examples include:

1. Weekly online tests or laboratory work worth a small proportion of the subject mark, or
2. Online quizzes where answers are released to students on completion, or
3. Professional assessment tasks, where the intention is to create an authentic assessment that has an absolute submission date, or
4. Pass/Fail assessment tasks.

Examinations

You must be available for all quizzes, tests and examinations. For courses that have final examinations, these are held during the University examination periods: February for Summer Term, May for T1, August for T2, and November/December for T3.

Please visit myUNSW for Provisional Examination timetable publish dates. For further information on exams, please see the Exams webpage.

Special Consideration

If you have experienced an illness or misadventure beyond your control that will interfere with your
assessment performance, you are eligible to apply for Special Consideration prior to submitting an assessment or sitting an exam.

UNSW now has a Fit to Sit / Submit rule, which means that if you attempt an exam or submit a piece of assessment, you are declaring yourself fit enough to do so and cannot later apply for Special Consideration.

For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW’s Special Consideration page.

Please note that students will not be required to provide any documentary evidence to support absences from any classes missed because of COVID-19 public health measures such as isolation. UNSW will not be insisting on medical certificates from anyone deemed to be a positive case, or when they have recovered. Such certificates are difficult to obtain and put an unnecessary strain on students and medical staff.

Applications for special consideration will be required for assessment and participation absences – but no documentary evidence for COVID 19 illness or isolation will be required.
Academic Honesty and Plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism, visit: student.unsw.edu.au/plagiarism. The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here:

Academic Information

Credit points

Course credit is calculated in Units-Of-Credit (UOC). The normal workload expectation for one UOC is approximately 25 hours per term. This includes class contact hours, private study, other learning activities, preparation and time spent on all assessable work.

Most coursework courses at UNSW are 6 UOC and involve an estimated 150 hours to complete, for both regular and intensive terms. Each course includes a prescribed number of hours per week (h/w) of scheduled face-to-face and/or online contact. Any additional time beyond the prescribed contact hours should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

On-campus class attendance

Public distancing conditions must be followed for all face-to-face classes. To ensure this, only students enrolled in those classes will be allowed in the room. Class rosters will be attached to corresponding rooms and circulated among lab demonstrators. No over-enrolment is allowed in face-to-face class. Students enrolled in online classes can swap their enrolment from online to a limited number of on-campus classes by Sunday, Week 1. Please refer to your course's Microsoft Teams and Moodle sites for more information about class attendance for in-person and online class sections/activities.

Your health and the health of those in your class is critically important. You must stay at home if you are sick or have been advised to self-isolate by NSW health or government authorities. Current alerts and a list of hotspots can be found here. You will not be penalised for missing a face-to-face activity due to illness or a requirement to self-isolate. We will work with you to ensure continuity of learning during your isolation and have plans in place for you to catch up on any content or learning activities you may miss. Where this might not be possible, an application for fee remission may be discussed. Further information is available on any course Moodle or Teams site.

In certain classroom and laboratory situations where physical distancing cannot be maintained or there is a high risk that it cannot be maintained, face masks will be considered mandatory PPE for students and staff.

For more information, please refer to the FAQs: https://www.covid-19.unsw.edu.au/safe-return-campus-faqs

Guidelines

All students are expected to read and be familiar with UNSW guidelines and polices. In particular, students should be familiar with the following:

- Attendance
- UNSW Email Address
- Special Consideration
- Exams
- Approved Calculators
- Academic Honesty and Plagiarism
Important Links

- Moodle
- Lab Access
- Health and Safety
- Computing Facilities
- Student Resources
- Course Outlines
- Engineering Student Support Services Centre
- Makerspace
- UNSW Timetable
- UNSW Handbook
- UNSW Mechanical and Manufacturing Engineering
- Equitable Learning Services

Image Credit

Synergies in Sound 2016

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.
Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and skill base</td>
<td></td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline</td>
<td>✔</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions within the engineering discipline</td>
<td></td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline</td>
<td></td>
</tr>
<tr>
<td>PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline</td>
<td></td>
</tr>
<tr>
<td>Engineering application ability</td>
<td></td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex engineering problem solving</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
<td>✔</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
<td></td>
</tr>
<tr>
<td>Professional and personal attributes</td>
<td></td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication in professional and lay domains</td>
<td></td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
<td></td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
<td>✔</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
<td></td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
<td>✔</td>
</tr>
</tbody>
</table>