Dr David Hutchinson
Research Fellow

Dr David Hutchinson

PhD, University of New South Wales, Sydney, Aug 2011 - Jan 2016.

PhB (Hons), Australian National University, Canberra, Feb 2005 - Dec 2008.

Science
Climate Change Research Centre

I am a researcher in paleoclimate modelling, focusing on past warm climate intervals such as the Eocene (56-34 Ma), Oligocene (34-23 Ma) and Miocene (23-5 Ma). I am interested in the long-term evolution of the deep ocean circulaution, and the start up of the Antarctic Circumpolar Current over these periods. I have developed simulations of the Eocene-Oligocene using the coupled climate model GFDL CM2.1, and am currently extending these to new intervals in the Oligocene and Miocene. I have also recently developed simulations of the Last Interglacial (127 ka), exploring the impact of partial melting of the West Antarctic ice sheet.

I am undertaking an ARC DECRA fellowship from 2022 to 2025, based at the Climate Change Research Centre. I am also a long-term visitor at ANU earth sciences, as part of the Climate and Fluid Physics group.

Phone
+61-2-9385 9766
Location
Climate Change Research Centre
  • Book Chapters | 2021
    2021, 'The Eocene-Oligocene boundary climate transition: An Antarctic perspective', in Antarctic Climate Evolution, Elsevier, pp. 297 - 361, http://dx.doi.org/10.1016/B978-0-12-819109-5.00009-8
  • Journal articles | 2023
    2023, 'Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes', Paleoceanography and Paleoclimatology, 38, http://dx.doi.org/10.1029/2022PA004496
    Journal articles | 2023
    2023, 'Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene transition', Climate of the Past, 19, pp. 123 - 140, http://dx.doi.org/10.5194/cp-19-123-2023
    Journal articles | 2023
    2023, 'The Relationship Between the Global Mean Deep-Sea and Surface Temperature During the Early Eocene', Paleoceanography and Paleoclimatology, 38, http://dx.doi.org/10.1029/2022PA004532
    Journal articles | 2022
    2022, 'African Hydroclimate During the Early Eocene From the DeepMIP Simulations', Paleoceanography and Paleoclimatology, 37, http://dx.doi.org/10.1029/2022PA004419
    Journal articles | 2022
    2022, 'Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry', Paleoceanography and Paleoclimatology, 37, http://dx.doi.org/10.1029/2021PA004329
    Journal articles | 2022
    2022, 'Impact of Mountains in Southern China on the Eocene Climates of East Asia', Journal of Geophysical Research: Atmospheres, 127, http://dx.doi.org/10.1029/2022JD036510
    Journal articles | 2022
    2022, 'Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia', Paleoceanography and Paleoclimatology, 37, http://dx.doi.org/10.1029/2022PA004418
    Journal articles | 2022
    2022, 'Simulation of Arctic sea ice within the DeepMIP Eocene ensemble: Thresholds, seasonality and factors controlling sea ice development', Global and Planetary Change, 214, http://dx.doi.org/10.1016/j.gloplacha.2022.103848
    Journal articles | 2022
    2022, 'The Impact of Southern Ocean Topographic Barriers on the Ocean Circulation and the Overlying Atmosphere', Journal of Climate, 35, pp. 5805 - 5821, http://dx.doi.org/10.1175/JCLI-D-21-0896.1
    Journal articles | 2021
    2021, 'DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data', Climate of the Past, 17, pp. 203 - 227, http://dx.doi.org/10.5194/cp-17-203-2021
    Journal articles | 2021
    2021, 'Simulating Miocene Warmth: Insights From an Opportunistic Multi-Model Ensemble (MioMIP1)', Paleoceanography and Paleoclimatology, 36, http://dx.doi.org/10.1029/2020PA004054
    Journal articles | 2021
    2021, 'The Eocene-Oligocene transition: A review of marine and terrestrial proxy data, models and model-data comparisons', Climate of the Past, 17, pp. 269 - 315, http://dx.doi.org/10.5194/cp-17-269-2021
    Journal articles | 2020
    2020, 'Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene', Climate of the Past, 16, pp. 1953 - 1968, http://dx.doi.org/10.5194/cp-16-1953-2020
    Journal articles | 2019
    Rainsley E; Turney CSM; Golledge NR; Wilmshurst JM; McGlone MS; Hogg AG; Li B; Thomas ZA; Roberts R; Jones RT; Palmer J; Flett V; de Wet G; Hutchinson DK; Lipson MJ; Fenwick P; Hines BR; Binetti U; Fogwill CJ, 2019, 'Pleistocene glacial history of the New Zealand subantarctic islands', Climate of the Past, 15, pp. 423 - 448, http://dx.doi.org/10.5194/cp-15-423-2019
    Journal articles | 2019
    2019, 'Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition', Nature Communications, 10, pp. 3797, http://dx.doi.org/10.1038/s41467-019-11828-z
    Journal articles | 2018
    2018, 'Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1', Climate of the Past, 14, pp. 789 - 810, http://dx.doi.org/10.5194/cp-14-789-2018
    Journal articles | 2018
    2018, 'Interconnectivity Between Volume Transports Through Arctic Straits', Journal of Geophysical Research: Oceans, 123, pp. 8714 - 8729, http://dx.doi.org/10.1029/2018JC014320
    Journal articles | 2017
    England MH; Hutchinson DK; Santoso A; Sijp WP, 2017, 'Ice-atmosphere feedbacks dominate the response of the climate system to drake passage closure', Journal of Climate, 30, pp. 5775 - 5790, http://dx.doi.org/10.1175/JCLI-D-15-0554.1
    Journal articles | 2017
    Turney CSM; Jones RT; Phipps SJ; Thomas Z; Hogg A; Kershaw AP; Fogwill CJ; Palmer J; Bronk Ramsey C; Adolphi F; Muscheler R; Hughen KA; Staff RA; Grosvenor M; Golledge NR; Rasmussen SO; Hutchinson DK; Haberle S; Lorrey A; Boswijk G; Cooper A, 2017, 'Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial', Nature Communications, 8, pp. 1 - 9, http://dx.doi.org/10.1038/s41467-017-00577-6
    Journal articles | 2016
    Dawson SK; Fisher AG; Lucas R; Hutchinson DK; Berney P; Keith D; Catford JA; Kingsford RT, 2016, 'Remote Sensing Measures Restoration Successes, but Canopy Heights Lag in Restoring Floodplain Vegetation', Remote Sensing, 8, pp. 542 - 542, http://dx.doi.org/10.3390/rs8070542
    Journal articles | 2016
    Hutchinson DK, 2016, 'Interhemispheric asymmetry of global warming: The role of ocean dynamics', Journal and Proceedings of the Royal Society of New South Wales, 149, pp. 95 - 95
    Journal articles | 2015
    Fogwill CJ; Turney CSM; Hutchinson DK; Taschetto AS; England MH, 2015, 'Obliquity control on Southern Hemisphere climate during the last glacial', Scientific Reports, 5, http://dx.doi.org/10.1038/srep11673
    Journal articles | 2015
    Hutchinson DK; England MH; Hogg AM; Snow K, 2015, 'Interhemispheric asymmetry of warming in an eddy-permitting coupled sector model', Journal of Climate, 28, pp. 7385 - 7406, http://dx.doi.org/10.1175/JCLI-D-15-0014.1
    Journal articles | 2015
    Turney CSM; Thomas ZA; Hutchinson DK; Bradshaw CJA; Brook BW; England MH; Fogwill CJ; Jones RT; Palmer J; Hughen KA; Cooper A, 2015, 'Obliquity-driven expansion of North Atlantic sea ice during the last glacial', Geophysical Research Letters, 42, pp. 10-382-10-390 - 10-382-10-390, http://dx.doi.org/10.1002/2015GL066344
    Journal articles | 2013
    2013, 'Interhemispheric asymmetry in transient global warming: The role of the Drake Passage', Geophysical Research Letters, 40, pp. 1587 - 1593, http://dx.doi.org/10.1002/grl.50341
    Journal articles | 2010
    2010, 'Southern ocean response to relative velocity wind stress forcing', Journal of Physical Oceanography, 40, pp. 326 - 339, http://dx.doi.org/10.1175/2009JPO4240.1
    Journal articles | 2009
    2009, 'The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation', Journal of Climate, 22, pp. 4066 - 4082, http://dx.doi.org/10.1175/2009JCLI2629.1
  • Preprints | 2023
    2023, Meridional Heat Transport in the DeepMIP Eocene ensemble: non-CO2 and CO2 effects, , http://dx.doi.org/10.22541/essoar.167065777.72214683/v2
    Other | 2023
    2023, Meridional Heat Transport in the DeepMIP Eocene ensemble: non-CO2 and CO2 effects, , http://dx.doi.org/10.5194/egusphere-egu23-6749
    Other | 2023
    2023, Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition, , http://dx.doi.org/10.5194/egusphere-egu23-8831
    Preprints | 2022
    2022, Global- and regional-scale hydrological response to early Eocene warmth, , http://dx.doi.org/10.1002/essoar.10512308.1
    Preprints | 2022
    2022, Meridional Heat Transport in the DeepMIP Eocene ensemble: non-CO2 and CO2 effects, , http://dx.doi.org/10.22541/essoar.167065777.72214683/v1
    Preprints | 2022
    2022, Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, , http://dx.doi.org/10.1002/essoar.10511735.1
    Preprints | 2022
    2022, Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, , http://dx.doi.org/10.1002/essoar.10511735.2
    Preprints | 2022
    2022, Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition, , http://dx.doi.org/10.5194/cp-2021-184
    Other | 2022
    2022, Supplementary material to "Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene Transition", , http://dx.doi.org/10.5194/cp-2021-184-supplement
    Preprints | 2022
    2022, The African monsoon during the early Eocene from the DeepMIP simulations, , http://dx.doi.org/10.1002/essoar.10510285.1
    Other | 2022
    2022, The impact of Southern Ocean bathymetry on the ocean circulation and the overlying atmosphere, , http://dx.doi.org/10.5194/egusphere-egu22-9044
    Preprints | 2022
    2022, The relationship between the global mean deep-sea and surface temperature during the Early Eocene, , http://dx.doi.org/10.1002/essoar.10512236.1
    Preprints | 2022
    2022, The relationship between the global mean deep-sea and surface temperature during the Early Eocene, , http://dx.doi.org/10.1002/essoar.10512236.2
    Preprints | 2021
    2021, Simulating Miocene warmth: insights from an opportunistic Multi-Model ensemble (MioMIP1), , http://dx.doi.org/10.1002/essoar.10505870.1
    Other | 2020
    2020, Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, , http://dx.doi.org/10.5194/egusphere-egu2020-7493
    Preprints | 2020
    2020, DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, , http://dx.doi.org/10.5194/cp-2019-149
    Other | 2020
    2020, On the inter-connectivity of volume transports through Arctic Straits, , http://dx.doi.org/10.5194/egusphere-egu2020-8569
    Other | 2020
    2020, Supplementary material to "DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data", , http://dx.doi.org/10.5194/cp-2019-149-supplement
    Other | 2020
    2020, Supplementary material to "The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons", , http://dx.doi.org/10.5194/cp-2020-68-supplement
    Preprints | 2020
    2020, The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, , http://dx.doi.org/10.5194/cp-2020-68
    Preprints | 2018
    2018, Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, , http://dx.doi.org/10.5194/cp-2017-161
    Other | 2018
    2018, Response to Reviewer 1 (Casimir de Lavergne), , http://dx.doi.org/10.5194/cp-2017-161-ac1
    Other | 2018
    2018, Response to Reviewer 2, , http://dx.doi.org/10.5194/cp-2017-161-ac2

2022-2024: ARC DECRA fellowship DE220100279: Did ocean circulation changes build the Antarctic ice sheet? $453,000 AUD

2019-2021: FORMAS Mobility grant 2018-01621: Climate Impacts of Paleogeography at the Eocene-Oligocene Transition. 3,260,925 SEK

  1. Developing equilibrium simulations of the Oligocene (30 Ma) and Miocene (15 Ma) warm climates using GFDL CM2.1.
  2. Developing snapshot simulations of Oligocene and Miocene simulations using ACCESS-ESM1.5.
  3. Enabling offline tracer simulations of Neodymium isotopes, to compare with proxy data of the meridional overturning circulation.
  4. Simulating partial loss of the West Antarctic Ice Sheet during the Last Interglacial (127 ka).