Professor Renate Egan

Professor Renate Egan

Photovoltaic and Renewable Energy Engineering

Professor Renate Egan leads the UNSW activity in the Australian Centre for Advanced Photovoltaics, the national centre for photovoltaics research led by UNSW, in partnership with ANU, UQ, CSIRO University of Melbourne and Monash, with the objective to work together on the next generation of photovoltaics.  She is also Deputy Head of School (Engagement) in the School of Solar PV and Renewable Energy Engineering, and Interim CEO of the UNSW Energy Institute. 

Renate joined UNSW in 2014 after a 20 year career in industry where she led manufacturing and technology development in Australia, Germany and China and is a leading authority on manufacturing costing and technology transfer. 

Renate is also Co-Founder of Solar Analytics, Australia's largest independent energy monitoring provider. In earlier roles, as Director and CTO of CSG Solar AG and Managing Director of Suntech R&D Australia Pty Ltd, Renate held executive leadership roles in technology development in the solar industry at a time of dramatic progress in manufacturing, development and deployment.  

With expertise across industry, manufacturing and small business, government, university and not-for-profits, Renate now participates on a number of national and international panels, boards and review committees across the energy sector. Renate represents Australian on the Executive Committee of the IEA PV Power Systems program.

Major Research Themes

Techno-economic analysis. Bringing together a lifetime of experience in taking technology to market, This project focuses on developing models and metrics for assessing new technology developments for their commercial viability and impact on energy markets. The research is cross-disciplinary, taking into account engineering developments, financial modelling, energy markets and environmental and social impacts.

Energy Data for Smart Decision Making. As the energy industry shifts from centralised to decentralised generation the use of good data  becomes critical for decision making. WIth a deep understanding of the cost trajectories in solar deployment, and with increasing visibility of energy data in networks, this research seeks to use machine learning and big-data analysis to understand energy generation and demand patterns, including elements of generation, storage and forecasting. 


Manufacturing costing, techno-economic analysis, solar cell manufacturing, solar engineering, energy policy, energy market analysis.


  • Journal articles | 2022
    Chang NL; Poduval GK; Sang B; Khoo K; Woodhouse M; Qi F; Dehghanimadvar M; Li WM; Egan RJ; Hoex B, 2022, 'Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells', Progress in Photovoltaics: Research and Applications,
  • Conference Papers | 2018
    Chang NL; Hallam B; Chen D; Egan RJ, 2018, 'Techno-economic analysis of silicon heterojunction cell sequences using hydrogenated p-type wafers', in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, pp. 2108 - 2113,