Mr Federico Santagati

Postdoctoral Fellow
Science
School of Mathematics & Statistics
  • Book Chapters | 2021
    Berchio E; Santagati F; Vallarino M, 2021, 'Poincaré and Hardy Inequalities on Homogeneous Trees', in Springer INdAM Series, pp. 1 - 22, http://dx.doi.org/10.1007/978-3-030-73363-6_1
  • Journal articles | 2024
    Meda S; Santagati F, 2024, 'Triangular maximal operators on locally finite trees', Mathematika, 70, http://dx.doi.org/10.1112/mtk.12253
    Journal articles | 2023
    Levi M; Martini A; Santagati F; Tabacco A; Vallarino M, 2023, 'Riesz Transform for a Flow Laplacian on Homogeneous Trees', Journal of Fourier Analysis and Applications, 29, http://dx.doi.org/10.1007/s00041-023-09999-x
    Journal articles | 2023
    Levi M; Santagati F; Tabacco A; Vallarino M, 2023, 'Analysis on Trees with Nondoubling Flow Measures', Potential Analysis, 58, pp. 731 - 759, http://dx.doi.org/10.1007/s11118-021-09957-6
    Journal articles | 2023
    Levi M; Santagati F; Tabacco A; Vallarino M, 2023, 'Poincaré inequalities on graphs', Analysis Mathematica, 49, pp. 529 - 544, http://dx.doi.org/10.1007/s10476-023-0215-5
    Journal articles | 2022
    Santagati F, 2022, 'Hardy spaces on homogeneous trees with flow measures', Journal of Mathematical Analysis and Applications, 510, http://dx.doi.org/10.1016/j.jmaa.2022.126015

My research focuses on harmonic analysis in nondoubling contexts, particularly investigating operators such as the Riesz transform, Hardy-Littlewood maximal operators, and spectral multipliers of Laplacians. I am also interested in Hardy spaces and heat kernel estimates. Central to my research is exploring whether well-established results in classical scenarios maintain their validity within nondoubling contexts and analyzing any discrepancies that may arise.