
“We haven't got the money, so we'll have to think.” Inspired by Ernest Rutherford’s famous quote; I developed Fusion Motion Capture; a network of 16 miniature wearable devices to analyse and model the biomechanics of alpine ski racing. My research made it possible to remotely monitor and provide feedback about athletes' performances in challenging alpine environments. My PhD outputs included six publications (cited over 300 times), a museum exhibition and being named the 2008 MacDiarmid New Zealand Young Scientist of the Year for Future Science and Technology.
A Neuroscientist and Engineer, my vanguard expertise developing wearable technology and smart textiles for gait-related motor impairment is recognised by 13 prizes, 2 research medals, 11 grants, 2 fellowships. I am excited about collaborating with and engaging patients, students, researchers, industry partners and key stakeholders who share a common vision “to transform healthcare through technological innovation”. I am motivated by solving problems at the nexus of engineering and medicine. I established and lead the new neurorehabilitation theme at UNSW. My team is now accepting motivated research students for a variety of projects. Please reach out for more information, I am more than happy to have a friendly chat over coffee!
Areas of research interest include:
I have a strong focus on translation of my teams research outcomes. In 2020, I founded Walking Tall Health, a commercial organisation to accelerate the health benefits my ground breaking non-invasive treatments for motor impairment. I have led Walking Tall Health through key staff appointments, seed funding and founding partnerships with UNSW, Neuroscience Research Australia and The George Institute for Global Health. Research highlights include the New Zealand Young Scientist of the Year (for Future Science and Technology), an Innovation Award from Fédération Int. de Ski, and the Yamaguichi Medal for Gait and Kinesiology, and 100+ publications cited over 1,800 times.
Please see https://research.unsw.edu.au/people/dr-matthew-andrew-brodie for more information including videos about current projects and our recent research advances.
2020 |
|
2019
|
|
2018
|
|
2017
|
|
2013
|
|
2013
|
|
2008 |
|
2007
|
|
2006 |
|
2005
|
|
2004 |
|
I have over 10-years’ experience conceiving new research ideas, developing technology-based interventions, and leading clinical studies. His multi-disciplinary team includes 1 postdoc physiotherapist, 3 clinical staff, 3 engineers, 2 PhD, and 5 master’s students. Research in neuroscience and engineering is demonstrated by 122 works [cited 1,800+ times]. Key publications and impact across neuroscience and engineering include:
This seminal work pioneered the use of affordable wearable technology in human movement science. It was also a lot of fun. See the image of The Blue Monster, my mobile PhD laboratory below.
For this top tier journal paper, I led the development of the first use of a digital gait biomarker as the primary outcome of a phase II drug trial. My analysis showed cholinesterase inhibitors can stabilise gait leading to 45% less falls. My PhD student was the first author. The paper immediately changed Parkinson's disease management as evidenced by positive review [Lancet Neurology 15(3)] and international media [Common drug is a real breakthrough… UK Express Jan-2016]. This paved the way for more efficient drug discovery by using digital endpoints.
I was the first to demonstrate that daily life and laboratory gaits are different. My algorithms have been used by Philips in their Senior Mobility Monitor and other research groups worldwide.
This paper presents my breakthrough analytics engine that analyses thousands of walks during daily life over 8-weeks for superior accuracy. It challenged the accepted reliance on expensive laboratory based gait assessments. Awarded the NeuRA Publication Prize 2016.
I showed that remote daily life gait assessments were better than laboratory assessments for predicting falls. Outcomes have been incorporated into products by industry partners and used by other groups in phase II & III clinical trials [e.g. iStoppFalls EU consortium (ICT-7-5.4-287361) & Rivastigmine phase 3 (NIHR16/31/13)]. Awarded an Asia-Pacific Biomechanics Medal.
In response to Nature 547, 336–339 (2017), my paper showed how unconscious bias in unvalidated smartphone apps leads to systematic under-counting of the true daily activity in obese people, females, and different cultures resulting in skewed research results.
My research outcomes have also been translated several commercial partners, leading to global uptake. Now accepting motivated research students for a variety of projects. I am more than happy to have a friendly chat over coffee!
My Research Supervision
I currently supervise and have successfully supervised many students as demonstrated by their positive testimonials:
“I would like to express my very great appreciation to my supervisor, Dr Matthew Brodie for his valuable and constructive suggestions. His willingness to give his time so generously have my deep gratitude. Dr Brodie’s ability to see the big picture while catching every detail helped this project greatly. His problem-solving skills helped me through lots of bottlenecks. The words of encouragement from Dr Brodie and his sunny personality kept me going.”
Thesis Project Jun 2019
“I’d like to take this opportunity to thank you for all the hard work and support you have shown me as my PhD supervisor. Since I started at NEURA you have been nothing but helpful and supportive and it means more to me than you’ll ever know. Your advice, guidance and experience have been tremendously helpful throughout my candidature and I would not have been able to get to this point without your help. You have inspired me to continue/complete my PhD which is something that I had almost given up on. I have learned so much from you and I look forward to continuing working with you in the future.”
Phd Candidate June 2019
“Thanks Matthew Brodie for your relentless enthusiasm; and for your kindness in agreeing to supervise me on this project. Thank you for always being communicative and somehow finding the time to spend with me. I am constantly impressed by your eye for detail and your commitment to researching everything thoroughly. I appreciate how much you encouraged me and challenged me to pursue excellence. I would be completely lost without your constant guidance and advice.”
Masters student June 2018
“Thank you to Dr Mathew Brodie for his brilliant guidance, support, enthusiasm and mentorship I learnt a lot from him throughout the project.”
Masters student June 2018
“The author would like to thank Dr Matthew Brodie for assisting and guidance for this thesis. It was the pleasure to be supervised by Dr Brodie he was such an enthusiasm and passion on topic that related to fall and balance, and also expert in Matlab and wearable device. All the guidance was very helpful and extend the author knowledge profoundly.”
Masters student June 2017
“I would like to thank Dr Matthew Brodie for his continuous support and mentorship provided throughout completion of this Thesis study. I am thankful for his motivation and enthusiasm for the work we were doing and his time for constantly taking meetings with me.”
Thesis Project June 2017
“I would firstly like to thank Dr Matthew Brodie for his support and guidance throughout this project. I am truly grateful to have had the opportunity to be mentored by someone with such boundless knowledge and willingness to teach.”
Thesis Project June 2016
My Teaching
BIOM9541 Mechanics of the Human Body
https://www.handbook.unsw.edu.au/undergraduate/courses/2021/BIOM9541/
BIOM9541 covers in depth the methods used in the analysis of the biomechanics of the musculoskeletal system. I cover methods to analyse body segment and joint kinematics, joint kinetics, work and power, muscle forces and associated energy cost. We look at advanced uses for wearable technology. Applications of biomechanics in clinical, occupational and recreational areas will be presented. Student highlights include using NeuRA's (a five minute walk from UNSW) state-of-the-art motion capture facility. I look forward to your participation in the T3 BIOM9541 course.
Health Informatics (TBC for 2022)