
My research area is environmental microbiology. I study Antarctic microorganisms, discovering which types live in and around Antarctica, learning how they evolve and grow in the cold, and assessing how they are likely to respond to ecosystem changes, including climate change. I have a special interest in Archaea – the third domain of life. The research is important because environmental microbes enable all other life forms on Earth to exist, and the vast majority of life on the planet grows at low temperatures.
My group recognizes the global importance of key and yet understudied environmental microbial groups, including cold-adapted Archaea. We choose model organisms to study and forge a new understanding of the molecular basis of adaptation through integrated studies of microbial physiology and ecology, protein biochemistry, genomics, proteomics and transcriptomics. This laboratory experimental approach flows on to environmental studies where we use approaches such as metagenomics and metaproteomics to examine whole Antarctic ecosystems (lake and Southern Ocean communities). The field-based projects have led to unexpected and novel insights about Antarctic microorganisms. The ‘peculiarities’ discovered have raised awareness of just how little is understood and how much remains to be learned about Antarctic biology.
The research has relevance because Antarctica is arguably the world’s most important continent for influencing the Earth’s climate and global ocean ecosystem. The uniqueness and sensitivity of Antarctica particularly demands that we rapidly improve our understanding of its biology. More so, most (~85%) of life on Earth lives at cold temperatures, and yet little is known about how the resident microbial communities drive critical biogeochemical processes (e.g. carbon cycle) that help to maintain the planet in a habitable state. The new insight we and other international groups of scientists are obtaining is timely as it is remedying critical gaps in our knowledge about Antarctic biology and has the potential to influence policy development aimed at mitigating and adapting to environmental change.
Future students with an interest in undertaking Honours, MPhil, MSc or PhD studies within the stated Research Goals should contact me to discuss. Senior members of the group involved in supervision include Dr Timothy J. Williams, Dr Michelle A. Allen and Dr Liang Shen (Visiting Scholar). Specific projects available include:
Hons/MPhil/MSc/PhD/undergrad-project/volunteer studies provide opportunities for students to gain experience and achieve high level qualifications in research-based science. An inherent part of performing research is to probe the unknown – exploring and discovering to provide clarity to often complex, intricate and certainly novel areas of science. Within the overarching Research Goals, there are a broad range of research topics available for students to pursue their interests, express their individual aptitude, and grow and develop as scientists. Guided by prior achievements and access to novel data and resources, as well as state of the art facilities, students will perform strong hypothesis driven investigations, while keeping a sharp eye open for serendipitous discovery. Projects are tailored to individuals on the basis of being provided ‘sufficient rope to explore but not too much to hang yourself'. New students are typically linked to other established members of the group, providing support spanning from the conceptual framework of their studies through to the lab-bench, computer-console and field-work ‘coal faces’ of the research. Students interested in interacting in a multi-disciplinary environment with a multi-national cohort of students, staff and scientific collaborators, should get in touch with me to discuss a future in environmental microbiology and Antarctic research.
Professional affiliations and service positions