Dr Sanaa Hobeichi

Dr Sanaa Hobeichi

Senior Research Associate

 

PhD Climate Science | UNSW Sydney 

MSc Environmental Sciences -  Major Remote Sensing | Qatar University

BSc Applied Mathematics - Major Computer Science | Lebanese University

Science
Weather of the 21st Century

Sanaa Hobeichi is a Senior Research Associate at the Climate Change Research Centre and the ARC Centre of Excellence for the weather of the 21st Century. She is interested in applying machine learning (ML) to advance climate and weather research. Her research focuses on using ML in climate downscaling and improving the prediction of weather and climate extremes. 

Sanaa is the co-chair of the Machine Learning for Climate and Weather Community Working Group at the ACCESS-NRI

Sanaa has a background in Climate Science, Environmental Science, Applied Mathematics, and Computer Science and she is a former International Baccalaureate teacher.

  • Journal articles | 2025
    De Rijke M; Van Den Hurk B; Salim F; Khourdajie AA; Bai N; Calzone R; Curran D; Demil G; Frew L; Gießing N; Gupta MK; Heuss M; Hobeichi S; Huard D; Kang J; Lucic A; Mallick T; Nath S; Okem A; Pernici B; Rajapakse T; Saleem H; Scells H; Schneider N; Spina D; Tian Y; Totin E; Trotman A; Valavandan R; Workneh D; Xie Y, 2025, 'Report on the 1st Workshop on Information Retrieval for Climate Impact (MANILA24) at SIGIR 2024', Annals of the Entomological Society of America, 59, http://dx.doi.org/10.1145/3769733.3769737
    Journal articles | 2025
    Grant MO; Ukkola AM; Vogel E; Hobeichi S; Pitman AJ; Borowiak AR; Fowler K, 2025, 'Historical trends of seasonal droughts in Australia', Hydrology and Earth System Sciences, 29, pp. 5555 - 5573, http://dx.doi.org/10.5194/hess-29-5555-2025
    Journal articles | 2025
    Hobeichi S; Curran D; Bittner M; Isphording RN; White BA; Alexander LV; Sun Y; de Burgh-Day C, 2025, 'Applying a standardised benchmarking framework to evaluate AI methods for precipitation downscaling over Australia', Artificial Intelligence for the Earth Systems, http://dx.doi.org/10.1175/aies-d-25-0048.1
    Journal articles | 2025
    Hobeichi S; Shao Y; Rampal N; Bittner M; Abramowitz G, 2025, 'Revisiting Tabular Machine Learning and Sequential Models to Advance Climate Downscaling', , http://dx.doi.org/10.5194/egusphere-egu24-7111
    Journal articles | 2025
    Holgate CM; Falster GM; Gillett ZE; Goswami P; Grant MO; Hobeichi S; Hoffmann D; Jiang X; Jin C; Lu X; Mu M; Page JC; Parker TJ; Vogel E; Abram NJ; Evans JP; Gallant AJE; Henley BJ; Kala J; King AD; Maher N; Nguyen H; Pitman AJ; Power SB; Rauniyar SP; Taschetto AS; Ukkola AM, 2025, 'Physical mechanisms of meteorological drought development, intensification and termination: an Australian review', Communications Earth and Environment, 6, http://dx.doi.org/10.1038/s43247-025-02179-3
    Journal articles | 2025
    Lu J; Li W; Hobeichi S; Azad S; Nazarian N, 2025, 'Machine Learning Predicts Pedestrian Wind Flowfrom Urban Morphology and Prevailing WindDirection', , http://dx.doi.org/10.5194/icuc12-101
    Journal articles | 2025
    Lu J; Li W; Hobeichi S; Azad SA; Nazarian N, 2025, 'Machine learning predicts pedestrian wind flow from urban morphology and prevailing wind direction', Environmental Research Letters, 20, http://dx.doi.org/10.1088/1748-9326/adc148
    Journal articles | 2025
    Nazarian N; Anand A; Hobeichi S; Naserikia M; Abram N; Slater L; Perkins-Kirkpatrick S; Meissner KJ, 2025, 'Predicting lethal humidity and associated excess mortality using machine learning and high-resolution datasets ', , http://dx.doi.org/10.5194/icuc12-1109
    Journal articles | 2025
    Rampal N; Gibson PB; Sherwood S; Abramowitz G; Hobeichi S, 2025, 'A Reliable Generative Adversarial Network Approach for Climate Downscaling and Weather Generation', Journal of Advances in Modeling Earth Systems, 17, http://dx.doi.org/10.1029/2024MS004668
    Journal articles | 2025
    Richardson D; Hobeichi S; Sweet LB; Rey-Costa E; Abramowitz G; Pitman AJ, 2025, 'Predicting Australian energy demand variability using weather data and machine learning', Environmental Research Letters, 20, http://dx.doi.org/10.1088/1748-9326/ad9b3b
    Journal articles | 2025
    Shao Y; Bishop C; Abramowitz G; Hobeichi S, 2025, 'Improving Multi-model Ensembles of Climate Projections through Time Variability Correction and Ensemble Dependence Transformation', , http://dx.doi.org/10.5194/egusphere-egu24-6796
    Journal articles | 2024
    Abramowitz G; Ukkola A; Hobeichi S; Page JC; Lipson M; De Kauwe MG; Green S; Brenner C; Frame J; Nearing G; Clark M; Best M; Anthoni P; Arduini G; Boussetta S; Caldararu S; Cho K; Cuntz M; Fairbairn D; Ferguson CR; Kim H; Kim Y; Knauer J; Lawrence D; Luo X; Malyshev S; Nitta T; Ogee J; Oleson K; Ottlé C; Peylin P; de Rosnay P; Rumbold H; Su B; Vuichard N; Walker AP; Wang-Faivre X; Wang Y; Zeng Y, 2024, 'On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results', Biogeosciences, 21, pp. 5517 - 5538, http://dx.doi.org/10.5194/bg-21-5517-2024
    Journal articles | 2024
    Devanand A; Falster GM; Gillett ZE; Hobeichi S; Holgate CM; Jin C; Mu M; Parker T; Rifai SW; Rome KS; Stojanovic M; Vogel E; Abram NJ; Abramowitz G; Coats S; Evans JP; Gallant AJE; Pitman AJ; Power SB; Rauniyar SP; Taschetto AS; Ukkola AM, 2024, 'Australia’s Tinderbox Drought: An extreme natural event likely worsened by human-caused climate change', Science Advances, 10, http://dx.doi.org/10.1126/sciadv.adj3460
    Journal articles | 2024
    Hobeichi S; Abramowitz G; Sen Gupta A; Taschetto AS; Richardson D; Rampal N; Ayat H; Alexander LV; Pitman AJ, 2024, 'How well do climate modes explain precipitation variability?', Npj Climate and Atmospheric Science, 7, http://dx.doi.org/10.1038/s41612-024-00853-5
    Journal articles | 2024
    Mu M; Sabot MEB; Ukkola AM; Rifai SW; De Kauwe MG; Hobeichi S; Pitman AJ, 2024, 'Examining the role of biophysical feedbacks on simulated temperature extremes during the Tinderbox Drought and Black Summer bushfires in southeast Australia', Weather and Climate Extremes, 45, http://dx.doi.org/10.1016/j.wace.2024.100703
    Journal articles | 2024
    Rampal N; Hobeichi S; Gibson PB; Bano-Medina J; Abramowitz G; Beucler T; Gonzalez-Abad J; Chapman W; Harder P; Gutierrez JM, 2024, 'Enhancing Regional Climate Downscaling through Advances in Machine Learning', ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS, 3, http://dx.doi.org/10.1175/AIES-D-23-0066.1
    Journal articles | 2024
    Shao Y; Bishop CH; Hobeichi S; Nishant N; Abramowitz G; Sherwood S, 2024, 'Time Variability Correction of CMIP6 Climate Change Projections', Journal of Advances in Modeling Earth Systems, 16, http://dx.doi.org/10.1029/2023MS003640
    Journal articles | 2023
    Chang Z; Fan L; Wigneron JP; Wang YP; Ciais P; Chave J; Fensholt R; Chen JM; Yuan W; Ju W; Li X; Jiang F; Wu M; Chen X; Qin Y; Frappart F; Li X; Wang M; Liu X; Tang X; Hobeichi S; Yu M; Ma M; Wen J; Xiao Q; Shi W; Liu D; Yan J, 2023, 'Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019', Journal of Remote Sensing United States, 3, http://dx.doi.org/10.34133/remotesensing.0005
    Journal articles | 2023
    Devanand A; Evans JP; Abramowitz G; Hobeichi S; Pitman AJ, 2023, 'What is the probability that a drought will break in Australia?', Weather and Climate Extremes, 41, http://dx.doi.org/10.1016/j.wace.2023.100598
    Journal articles | 2023
    Hobeichi S; Nishant N; Shao Y; Abramowitz G; Pitman A; Sherwood S; Bishop C; Green S, 2023, 'Using Machine Learning to Cut the Cost of Dynamical Downscaling', Earth S Future, 11, http://dx.doi.org/10.1029/2022EF003291
    Journal articles | 2023
    Nishant N; Hobeichi S; Sherwood S; Abramowitz G; Shao Y; Bishop C; Pitman A, 2023, 'Comparison of a novel machine learning approach with dynamical downscaling for Australian precipitation', Environmental Research Letters, 18, http://dx.doi.org/10.1088/1748-9326/ace463
    Journal articles | 2023
    Teckentrup L; De Kauwe MG; Abramowitz G; Pitman AJ; Ukkola AM; Hobeichi S; François B; Smith B, 2023, 'Opening Pandora's box: Reducing global circulation model uncertainty in Australian simulations of the carbon cycle', Earth System Dynamics, 14, pp. 549 - 576, http://dx.doi.org/10.5194/esd-14-549-2023
    Journal articles | 2022
    Beringer J; Moore CE; Cleverly J; Campbell DI; Cleugh H; De Kauwe MG; Kirschbaum MUF; Griebel A; Grover S; Huete A; Hutley LB; Laubach J; Van Niel T; Arndt SK; Bennett AC; Cernusak LA; Eamus D; Ewenz CM; Goodrich JP; Jiang M; Hinko-Najera N; Isaac P; Hobeichi S; Knauer J; Koerber GR; Liddell M; Ma X; Macfarlane C; McHugh ID; Medlyn BE; Meyer WS; Norton AJ; Owens J; Pitman A; Pendall E; Prober SM; Ray RL; Restrepo-Coupe N; Rifai SW; Rowlings D; Schipper L; Silberstein RP; Teckentrup L; Thompson SE; Ukkola AM; Wall A; Wang YP; Wardlaw TJ; Woodgate W, 2022, 'Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network', Global Change Biology, 28, pp. 3489 - 3514, http://dx.doi.org/10.1111/gcb.16141
    Journal articles | 2022
    Hobeichi S; Abramowitz G; Evans JP; Ukkola A, 2022, 'Toward a Robust, Impact-Based, Predictive Drought Metric', Water Resources Research, 58, http://dx.doi.org/10.1029/2021WR031829
    Journal articles | 2022
    Hobeichi S; Abramowitz G; Ukkola AM; De Kauwe M; Pitman A; Evans JP; Beck H, 2022, 'Reconciling historical changes in the hydrological cycle over land', Npj Climate and Atmospheric Science, 5, http://dx.doi.org/10.1038/s41612-022-00240-y
    Journal articles | 2021
    Chang Z; Hobeichi S; Wang YP; Tang X; Abramowitz G; Chen Y; Cao N; Yu M; Huang H; Zhou G; Wang G; Ma K; Du S; Li S; Han S; Ma Y; Wigneron JP; Fan L; Saatchi SS; Yan J, 2021, 'New forest aboveground biomass maps of China integrating multiple datasets', Remote Sensing, 13, http://dx.doi.org/10.3390/rs13152892
    Journal articles | 2021
    Hobeichi S; Abramowitz G; Evans JP, 2021, 'Robust historical evapotranspiration trends across climate regimes', Hydrology and Earth System Sciences, 25, pp. 3855 - 3874, http://dx.doi.org/10.5194/hess-25-3855-2021
    Journal articles | 2021
    Hobeichi S, 2021, 'Towards a robust, impact-based, predictive drought metric', , http://dx.doi.org/10.1002/essoar.10507062.1
    Journal articles | 2021
    Mu M; De Kauwe MG; Ukkola AM; Pitman AJ; Guo W; Hobeichi S; Briggs PR, 2021, 'Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts', , http://dx.doi.org/10.5194/esd-2021-31
    Journal articles | 2021
    Mu M; De Kauwe MG; Ukkola AM; Pitman AJ; Guo W; Hobeichi S; Briggs PR, 2021, 'Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts', Earth System Dynamics, 12, pp. 919 - 938, http://dx.doi.org/10.5194/esd-12-919-2021
    Journal articles | 2020
    Hobeichi S; Abramowitz G; Contractor S; Evans J, 2020, 'Evaluating precipitation datasets using surface water and energy budget closure', Journal of Hydrometeorology, 21, pp. 989 - 1009, http://dx.doi.org/10.1175/JHM-D-19-0255.1
    Journal articles | 2020
    Hobeichi S; Abramowitz G; Evans J, 2020, 'Conserving land-atmosphere synthesis suite (CLASS)', Journal of Climate, 33, pp. 1821 - 1844, http://dx.doi.org/10.1175/JCLI-D-19-0036.1
    Journal articles | 2019
    Hobeichi S; Abramowitz G; Evans J; Beck HE, 2019, 'Linear Optimal Runoff Aggregate (LORA): A global gridded synthesis runoff product', Hydrology and Earth System Sciences, 23, pp. 851 - 870, http://dx.doi.org/10.5194/hess-23-851-2019
    Journal articles | 2018
    Hobeichi S; Abramowitz G; Evans J; Ukkola A, 2018, 'Derived Optimal Linear Combination Evapotranspiration (DOLCE): A global gridded synthesis et estimate', Hydrology and Earth System Sciences, 22, pp. 1317 - 1336, http://dx.doi.org/10.5194/hess-22-1317-2018
  • Preprints | 2025
    Curran DJ; Hobeichi S; Saleem H; Xue H; Salim FD, 2025, Generate the Forest before the Trees -- A Hierarchical Diffusion model for Climate Downscaling, http://dx.doi.org/10.48550/arxiv.2506.19391
    Preprints | 2025
    Falster G; Abramowitz G; Hobeichi S; Hughes C; Treble P; Abram NJ; Bird MI; Cauquoin A; Dixon B; Drysdale R; Jin C; Munksgaard N; Proemse B; Tyler JJ; Werner M; Tadros C, 2025, High resolution monthly precipitation isotope estimates across Australia from machine learning, http://dx.doi.org/10.5194/egusphere-2025-2458
    Other | 2025
    Grant M; Ukkola A; Vogel E; Hobeichi S; Pitman A; Hartley A, 2025, Understanding past changes in Australian droughts and their drivers, http://dx.doi.org/10.5194/egusphere-egu24-1738
    Preprints | 2025
    Grant MO; Ukkola AM; Vogel E; Hobeichi S; Pitman AJ; Borowiak AR; Fowler K, 2025, Historical trends of seasonal droughts in Australia, http://dx.doi.org/10.5194/egusphere-2024-4024
    Preprints | 2025
    Naserikia M; Hart MA; Shamsabadi EA; Meissner K; Hobeichi S; Bechtel B; Nazarian N, 2025, Developing gridded air temperature data over cities using machine learning, http://dx.doi.org/10.21203/rs.3.rs-7987756/v1
    Preprints | 2025
    Rijke MD; Hurk BVD; Salim F; Khourdajie AA; Bai N; Calzone R; Curran D; Demil G; Frew L; Gießing N; Gupta MK; Heuss M; Hobeichi S; Huard D; Kang J; Lucic A; Mallick T; Nath S; Okem A; Pernici B; Rajapakse T; Saleem H; Scells H; Schneider N; Spina D; Tian Y; Totin E; Trotman A; Valavandan R; Workneh D; Xie Y, 2025, Information Retrieval for Climate Impact, http://arxiv.org/abs/2504.01162v1
    Preprints | 2024
    Abramowitz G; Ukkola A; Hobeichi S; Cranko Page J; Lipson M; De Kauwe M; Green S; Brenner C; Frame J; Nearing G; Clark M; Best M; Anthoni P; Arduini G; Boussetta S; Caldararu S; Cho K; Cuntz M; Fairbairn D; Ferguson C; Kim H; Kim Y; Knauer J; Lawrence D; Luo X; Malyshev S; Nitta T; Ogee J; Oleson K; Ottlé C; Peylin P; de Rosnay P; Rumbold H; Su B; Vuichard N; Walker A; Wang-Faivre X; Wang Y; Zeng Y, 2024, On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results, http://dx.doi.org/10.5194/egusphere-2023-3084
    Preprints | 2024
    Curran D; Saleem H; Hobeichi S; Salim F, 2024, Resolution-Agnostic Transformer-based Climate Downscaling, http://dx.doi.org/10.48550/arxiv.2411.14774
    Preprints | 2024
    Hobeichi S; Abramowitz G; Gupta AS; Taschetto A; Richardson D; Rampal N; Ayat H; Alexander L; Pitman A, 2024, How well do climate modes explain precipitationvariability?, http://dx.doi.org/10.21203/rs.3.rs-4867098/v1
    Preprints | 2024
    Lu J; Li W; Hobeichi S; Azad S; Nazarian N, 2024, Machine Learning Predicts Pedestrian Wind Flow from Urban Morphology and Prevailing Wind Direction, http://dx.doi.org/10.31223/x5f717
    Preprints | 2024
    Rampal N; Gibson PB; Sherwood S; Abramowitz G; Hobeichi S, 2024, A Reliable Generative Adversarial Network Approach for Climate Downscaling and Weather Generation, http://dx.doi.org/10.22541/essoar.171352077.78968815/v2
    Preprints | 2024
    Rampal N; Gibson PB; Sherwood S; Abramowitz G; Hobeichi S, 2024, A Robust Generative Adversarial Network Approach for Climate Downscaling and Weather Generation, http://dx.doi.org/10.22541/essoar.171352077.78968815/v1
    Preprints | 2023
    Devanand A; Falster G; Gillett Z; Hobeichi S; Holgate C; Jin C; Mu M; Parker T; Rifai S; Rome K; Stojanovic M; Vogel E; Abram N; Abramowitz G; Coats S; Evans J; Gallant A; Pitman A; Power S; Rauniyar S; Taschetto A; Ukkola A, 2023, Australia’s Tinderbox Drought: an extreme natural event likely worsened by human-caused climate change, http://dx.doi.org/10.31223/x53q2b
    Preprints | 2022
    Teckentrup L; De Kauwe MG; Abramowitz G; Pitman AJ; Ukkola AM; Hobeichi S; François B; Smith B, 2022, Opening Pandora's box: How to constrain regional projections of the carbon cycle, http://dx.doi.org/10.5194/egusphere-2022-623
    Preprints | 2020
    Hobeichi S; Abramowitz G; Evans J, 2020, Robust historical evapotranspiration trends across climate regimes, http://dx.doi.org/10.5194/hess-2020-595
    Conference Papers | 2015
    Warren C; DuPont J; Abdel-Moati M; Hobeichi S; Palandro D; Purkis S, 2015, 'Toward the development of a remote sensing and field data framework to aid management decisions in the state of Qatar coastal environment', in Qatar University Life Science Symposium-QULSS 2015 Global Changes: The Arabian Gulf Ecosystem, Hamad bin Khalifa University Press (HBKU Press), presented at Qatar University Life Science Symposium-QULSS 2015 Global Changes: The Arabian Gulf Ecosystem, http://dx.doi.org/10.5339/qproc.2015.qulss2015.13
    Preprints |
    Devanand A; Evans JP; Abramowitz G; Hobeichi S; Pitman AJ, ­­­What is the Probability that a Drought Will Break in Australia?, http://dx.doi.org/10.2139/ssrn.4251061

  • 2026-2028 Office of National Intelligence Grant: Accelerating climate intelligence provision for risk assessment using machine learning and artificial intelligence. Chief Investigators: Andy Pitman, Anna Ukkola, Sanaa Hobeichi, Elisabeth Vogel, Scott Sisson
  • 2026 Faculty of Science Research Grant: Is Equation Discovery an effective Machine Learning approach for Climate Science? A test case in drought modelling

 

Machine learning for climate downscaling

This body of work applies machine learning to improve the spatial representation of climate variables, benchmark ML approaches against dynamical downscaling, and reduce the computational cost of regional climate simulations.

Selected publications:

  • Hobeichi, S. et al. (2026). Applying a standardised benchmarking framework to evaluate AI methods for precipitation downscaling over Australia. Artificial Intelligence for the Earth Systems. 

  • Rampal, N., Hobeichi, S. et al. (2025). A Reliable Generative Adversarial Network Approach for Climate Downscaling and Weather Generation. Journal of Advances in Modeling Earth Systems.

  • Rampal, N., Hobeichi, S. et al. (2024). Enhancing Regional Climate Downscaling through Advances in Machine Learning. Artificial Intelligence for the Earth Systems.  

  • Nishant, N., Hobeichi, S. et al. (2023). Comparison of a novel machine learning approach with dynamical downscaling for Australian precipitation. Environmental Research Letters. 

  • Hobeichi, S. et al. (2023). Using Machine Learning to Cut the Cost of Dynamical Downscaling. Earth's Future.
     

Machine learning in drought research

Machine learning is used here to improve drought characterisation, prediction, and interpretation

Selected publications:

  • Hobeichi, S. et al. (2022). Toward a Robust, Impact-Based, Predictive Drought Metric. Water Resources Research.

  • Devanand, A., Hobeichi, S. et al. (2024). Australia's Tinderbox Drought: An extreme natural event likely worsened by human-caused climate change. Science Advances.

  • Grant, M. O., Hobeichi, S. et al. (2025). Historical trends of seasonal droughts in Australia. Hydrology and Earth System Sciences. 

  • Holgate, C. M., Hobeichi, S. et al. (2025). Physical mechanisms of meteorological drought development, intensification and termination: an Australian review. Communications Earth & Environment. 
     

Machine learning in renewable energy research

  • Richardson, D., Hobeichi, S. et al. (2025). Predicting Australian energy demand variability using weather data and machine learning. Environmental Research Letters
     

Machine learning in paleoclimate research

  • Falster, G., Hobeichi, S. et al. (2026). High resolution monthly precipitation isotope estimaes across Australia from machine learning. EGUsphere.
     

Large-scale climate modes and rainfall predictability using machine learning

  • Hobeichi, S. et al. (2024). How well do climate modes explain precipitation variability? npj Climate and Atmospheric Science.
     

Historical changes in hydrological and energy budgets

This body of work investigates historical changes in the terrestrial hydrological cycle and land–atmosphere energy exchanges, using observational synthesis products, energy and water budget closure, and model evaluation frameworks.

Selected publications:

  • Hobeichi, S. et al. (2022). Reconciling historical changes in the hydrological cycle over land. npj Climate and Atmospheric Science.

  • Hobeichi, S. et al. (2021). Robust historical evapotranspiration trends across climate regimes. Hydrology and Earth System Sciences. 

  • Hobeichi, S. et al. (2020). Evaluating precipitation datasets using surface water and energy budget closure. Journal of Hydrometeorology. 

  • Hobeichi, S. et al. (2020). Conserving land-atmosphere synthesis suite (CLASS). Journal of Climate. 

  • Hobeichi, S. et al. (2019). Linear Optimal Runoff Aggregate (LORA). Hydrology and Earth System Sciences. 

  • Hobeichi, S. et al. (2018). Derived Optimal Linear Combination Evapotranspiration (DOLCE). Hydrology and Earth System Sciences.  


Scientific datasets (DOLCE, LORA, and CLASS)

  • Hobeichi, S. et al. (2021). Derived Optimal Linear Combination Evapotranspiration - DOLCE v3.0. NCI National Research Data Collection.

  • Hobeichi, S. et al. ( 2019). Conserving Land-Atmosphere Synthesis Suite (CLASS) v1.1. NCI National Research Data Collection.

  • Hobeichi, S. et al. (2018). Linear Optimal Runoff Aggregate (LORA) v1.0 . NCI National Research Data Collection.

  • Hobeichi, S. et al. (2017). Derived Optimal Linear Combination Evapotranspiration v1.0 . NCI National Research Data Collection.

 

My Research Supervision

Husnain Asif - PhD candidate at Australian National University
Thesis: Advancing climate model downscaling for southeast Australia by integrating latent diffusion models with NARCliM 2.0 ensemble
Supervising with: Prof. Sarah Perkins-Kirkpatrick,  Prof. John Taylor

Yuan Zhuang - PhD candidate at UNSW Sydney
Supervising with A/Prof. Fei Huang and Prof. Pen Shi
 

Yajat Goswami - MPhil candidate at UNSW Sydney
Thesis: Can AI learn Hydrology? Evaluating Physics-based and AI runoff & streamflow simulations across Australia's river basins
Supervising with: Prof. Lisa Alexander