This talk will discuss some connections between the representation theory of the affine Lie algebra slˆ2sl^2

and the Rogers-Ramanujan-type identities.

After providing some introductory definitions and results, I will introduce quasi-particles in the principal picture of slˆ2sl^2 and construct quasi-particle monomial bases

of standard slˆ2sl^2-modules. I will show that their principally specialized characters are given as products of sum sides of the corresponding Rogers-Ramanujan-type identities with the character of the Fock space for the principal Heisenberg subalgebra.

This is a joint work with Mirko Primc.


Slaven Kozic

Research Area

University of Sydney


Tue, 13/09/2016 - 12:00pm to 1:00pm


RC-4082, The Red Centre, UNSW