K3 surfaces are amongst the most studied surfaces in algebraic geometry.  What makes the geometry of a K3 so interesting is that it carries a nondegenerate holomorphic 2-form: thus any K3 is a compact holomorphic symplectic manifold.  Examples of such manifolds are quite rare, and their study and classification is an active area of research.  

A particular example of a homolorphic symplectic manifold (discovered by Beauville) is the Hilbert scheme parametrizing subsets (or subschemes) of $n$ points on a K3 surface. While any K3 varies in a 20-dimensional family,  has a 21-dimensional space of deformations, and it is an open problem to give a geometric description of these additional deformations.  This talk will attempt to explain how this extra modulus may be seen to arise from ``noncommutative’’ deformations of $X$.

The presentation is aimed at a broad audience.


Sukhendu Mehrotra

Research Area



Fri, 17/05/2013 - 2:30pm to 3:30pm


Chemistry Lecture Theatre 2, University of Sydney