Krishnendu Gongopadhyay

Let SU(n,1)SU(n,1) be the isometry group of the nn-dimensional complex hyperbolic space. An element gg in SU(n,1)SU(n,1) is called loxodromic or hyperbolic if it has exactly two fixed points on the boundary of the complex hyperbolic space. We shall discuss a classification of pairs of loxodromic elements in SU(n,1)SU(n,1) up to conjugacy. This talk is based on my joint work with Shiv Parsad.
Krishnendu Gongopadhyay
Indian Institute of Science Education and Research (IISER) Mohali
Tue, 17/10/2017 - 12:00pm to 1:00pm
RC-4082, The Red Centre, UNSW