- UNSW
- ...
- Our schools
- Mathematics & Statistics
- Engage with us
- Seminars
- 2020
- Generating digraphs with derangements
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
- Undergraduate
- Honours year
- Postgraduate coursework
-
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
-
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Student societies
- Student noticeboard
- Casual tutors
- Engage with us
- News & events
- Contact
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Engage with us
- News & events
- Contact
Abstract:
Let S be a collection of derangements (fixed point-free permutations) of a possibly infinite set X. The derangement action digraph DA(X,S) is the digraph on vertex set X that has an arc from x to y if and only if some derangement in S maps x to y. We say that S generates DA(X,S). Derangement action digraphs were introduced by Iradmusa and Praeger in 2019, adapting the definition of a group action digraph due to Annexstein, Baumslag and Rosenberg.
I will discuss recent work by Iradmusa, Praeger and myself in which we characterise, for each positive integer k, the digraphs that can be generated by at most k derangements. Our result resembles the De Bruijn-Erdős theorem in that it characterises a property of an infinite graph in terms of properties of its finite subgraphs.
This is a seminar of the Combinatorial Mathematics Society of Australasia.
To attend email cmsa-webinar@monash.edu with the subject 'subscribe' to receive zoom details. [You only need to subscribe once, not for future talks.]