- UNSW
- ...
- Our schools
- Mathematics & Statistics
- Engage with us
- Seminars
- 2020
- Large fluctuations of random multiplicative functions
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
- Undergraduate
- Honours year
- Postgraduate coursework
-
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
-
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Student societies
- Student noticeboard
- Casual tutors
- Engage with us
- News & events
- Contact
- Home
- Our school
- Study with us
- Our research
-
Student life & resources
Postgraduate research
- Info for new students
- Current research students
- Postgraduate conference
- Postgraduate events
- Postgraduate student awards
- Michael Tallis PhD Research Travel Award
- Information about research theses
- Past research students
- Resources
- Entry requirements
- PhD projects
- Obtaining funding
- Application & fee information
Student services
- Help for postgraduate students
- Thesis guidelines
- School assessment policies
- Computing information
- Mathematics Drop-in Centre
- Consultation
- Statistics Consultation Service
- Academic advice
- Enrolment variation
- Changing tutorials
- Illness or misadventure
- Application form for existing casual tutors
- ARC grants Head of School sign off
- Computing facilities
- Choosing your major
- Engage with us
- News & events
- Contact
Abstract:
Random multiplicative functions f(n)f(n) are a well studied random model for deterministic multiplicative functions like Dirichlet characters or the Mobius function. Arguably the first question ever studied about them, by Wintner in 1944, was to obtain almost sure bounds for the largest fluctuations of their partial ∑n≤xf(n)∑n≤xf(n), seeking to emulate the classical Law of the Iterated Logarithm for independent random variables. It remains an open question to sharply determine the size of these fluctuations, and in this talk I will describe a new result in that direction. I hope to get to some interesting details of the new proof in the latter part of the talk, but most of the discussion should be widely accessible.
This talk is part of the online Number Theory Web Seminar, and will be streamed live on Zoom.
To attend the talks, registration is necessary. To register please visit our website
Registered users will receive an email before each talk with a link to the Zoom meeting.
Organisers:
Mike Bennett (University of British Columbia)
Philipp Habegger (University of Basel)
Alina Ostafe (UNSW Sydney)